Solving the Production-Routing Problem with energy consideration: A case study from the furniture industry

Author(s):  
Besma Zeddam ◽  
Faycal Belkaid ◽  
Mohammed Bennekrouf
Author(s):  
Yuzhuo Qiu ◽  
Dan Zhou ◽  
Yanan Du ◽  
Jie Liu ◽  
Panos M. Pardalos ◽  
...  

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mohammad Ali Beheshtinia ◽  
Narjes Salmabadi ◽  
Somaye Rahimi

Purpose This paper aims to provide an integrated production-routing model in a three-echelon supply chain containing a two-layer transportation system to minimize the total costs of production, transportation, inventory holding and expired drugs treatment. In the proposed problem, some specifications such as multisite manufacturing, simultaneous pickup and delivery and uncertainty in parameters are considered. Design/methodology/approach At first, a mathematical model has been proposed for the problem. Then, one possibilistic model and one robust possibilistic model equivalent to the initial model are provided regarding the uncertain nature of the model parameters and the inaccessibility of their probability function. Finally, the performance of the proposed model is evaluated using the real data collected from a pharmaceutical production center in Iran. The results reveal the proper performance of the proposed models. Findings The results obtained from applying the proposed model to a real-life production center indicated that the number of expired drugs has decreased because of using this model, also the costs of the system were reduced owing to integrating simultaneous drug pickup and delivery operations. Moreover, regarding the results of simulations, the robust possibilistic model had the best performance among the proposed models. Originality/value This research considers a two-layer vehicle routing in a production-routing problem with inventory planning. Moreover, multisite manufacturing, simultaneous pickup of the expired drugs and delivery of the drugs to the distribution centers are considered. Providing a robust possibilistic model for tackling the uncertainty in demand, costs, production capacity and drug expiration costs is considered as another remarkable feature of the proposed model.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mahdieh Masoumi ◽  
Amir Aghsami ◽  
Mohammad Alipour-Vaezi ◽  
Fariborz Jolai ◽  
Behdad Esmailifar

PurposeDue to the randomness and unpredictability of many disasters, it is essential to be prepared to face difficult conditions after a disaster to reduce human casualties and meet the needs of the people. After the disaster, one of the most essential measures is to deliver relief supplies to those affected by the disaster. Therefore, this paper aims to assign demand points to the warehouses as well as routing their related relief vehicles after a disaster considering convergence in the border warehouses.Design/methodology/approachThis research proposes a multi-objective, multi-commodity and multi-period queueing-inventory-routing problem in which a queuing system has been applied to reduce the congestion in the borders of the affected zones. To show the validity of the proposed model, a small-size problem has been solved using exact methods. Moreover, to deal with the complexity of the problem, a metaheuristic algorithm has been utilized to solve the large dimensions of the problem. Finally, various sensitivity analyses have been performed to determine the effects of different parameters on the optimal response.FindingsAccording to the results, the proposed model can optimize the objective functions simultaneously, in which decision-makers can determine their priority according to the condition by using the sensitivity analysis results.Originality/valueThe focus of the research is on delivering relief items to the affected people on time and at the lowest cost, in addition to preventing long queues at the entrances to the affected areas.


Author(s):  
Bi Kouaï Bertin Kayé ◽  
Moustapha Diaby ◽  
Tchimou N’Takpé ◽  
Souleymane Oumtanaga

2020 ◽  
Vol 21 (2) ◽  
pp. 225-234
Author(s):  
Ananda Noor Sholichah ◽  
Y Yuniaristanto ◽  
I Wayan Suletra

Location and routing are the main critical problems investigated in a logistic. Location-Routing Problem (LRP) involves determining the location of facilities and vehicle routes to supply customer's demands. Determination of depots as distribution centers is one of the problems in LRP.  In LRP, carbon emissions need to be considered because these problems cause global warming and climate change. In this paper, a new mathematical model for LRP considering CO2 emissions minimization is proposed. This study developed a new  Mixed Integer Linear Programming (MILP)  model for LRP with time windows and considered the environmental impacts.  Finally, a case study was conducted in the province of Central Java, Indonesia. In this case study, there are three depot candidates. The study results indicated that using this method in existing conditions and constraints provides a more optimal solution than the company's actual route. A sensitivity analysis was also carried out in this case study.


Sign in / Sign up

Export Citation Format

Share Document