scholarly journals How to Select and Use Tools? : Active Perception of Target Objects Using Multimodal Deep Learning

2021 ◽  
Vol 6 (2) ◽  
pp. 2517-2524
Author(s):  
Namiko Saito ◽  
Tetsuya Ogata ◽  
Satoshi Funabashi ◽  
Hiroki Mori ◽  
Shigeki Sugano
2019 ◽  
Vol 4 (30) ◽  
pp. eaaw6736 ◽  
Author(s):  
A. Mitrokhin ◽  
P. Sutor ◽  
C. Fermüller ◽  
Y. Aloimonos

The hallmark of modern robotics is the ability to directly fuse the platform’s perception with its motoric ability—the concept often referred to as “active perception.” Nevertheless, we find that action and perception are often kept in separated spaces, which is a consequence of traditional vision being frame based and only existing in the moment and motion being a continuous entity. This bridge is crossed by the dynamic vision sensor (DVS), a neuromorphic camera that can see the motion. We propose a method of encoding actions and perceptions together into a single space that is meaningful, semantically informed, and consistent by using hyperdimensional binary vectors (HBVs). We used DVS for visual perception and showed that the visual component can be bound with the system velocity to enable dynamic world perception, which creates an opportunity for real-time navigation and obstacle avoidance. Actions performed by an agent are directly bound to the perceptions experienced to form its own “memory.” Furthermore, because HBVs can encode entire histories of actions and perceptions—from atomic to arbitrary sequences—as constant-sized vectors, autoassociative memory was combined with deep learning paradigms for controls. We demonstrate these properties on a quadcopter drone ego-motion inference task and the MVSEC (multivehicle stereo event camera) dataset.


2018 ◽  
Vol 3 (23) ◽  
pp. eaav1778 ◽  
Author(s):  
Danica Kragic

Computer vision diverged from robotics and has focused on contests and data sets; reconnecting the two could solve real-world problems.


Author(s):  
Stellan Ohlsson
Keyword(s):  

2019 ◽  
Vol 53 (3) ◽  
pp. 281-294
Author(s):  
Jean-Michel Foucart ◽  
Augustin Chavanne ◽  
Jérôme Bourriau

Nombreux sont les apports envisagés de l’Intelligence Artificielle (IA) en médecine. En orthodontie, plusieurs solutions automatisées sont disponibles depuis quelques années en imagerie par rayons X (analyse céphalométrique automatisée, analyse automatisée des voies aériennes) ou depuis quelques mois (analyse automatique des modèles numériques, set-up automatisé; CS Model +, Carestream Dental™). L’objectif de cette étude, en deux parties, est d’évaluer la fiabilité de l’analyse automatisée des modèles tant au niveau de leur numérisation que de leur segmentation. La comparaison des résultats d’analyse des modèles obtenus automatiquement et par l’intermédiaire de plusieurs orthodontistes démontre la fiabilité de l’analyse automatique; l’erreur de mesure oscillant, in fine, entre 0,08 et 1,04 mm, ce qui est non significatif et comparable avec les erreurs de mesures inter-observateurs rapportées dans la littérature. Ces résultats ouvrent ainsi de nouvelles perspectives quand à l’apport de l’IA en Orthodontie qui, basée sur le deep learning et le big data, devrait permettre, à moyen terme, d’évoluer vers une orthodontie plus préventive et plus prédictive.


2020 ◽  
Author(s):  
L Pennig ◽  
L Lourenco Caldeira ◽  
C Hoyer ◽  
L Görtz ◽  
R Shahzad ◽  
...  
Keyword(s):  

2020 ◽  
Author(s):  
A Heinrich ◽  
M Engler ◽  
D Dachoua ◽  
U Teichgräber ◽  
F Güttler
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document