scholarly journals An efficient Quasi-Newton method for nonlinear inverse problems via learned singular values

2021 ◽  
pp. 1-1
Author(s):  
Danny Smyl ◽  
Tyler Tallman ◽  
Dong Liu ◽  
Andreas Hauptmann
2006 ◽  
Vol 153 (2) ◽  
pp. 199 ◽  
Author(s):  
J.-L. Hu ◽  
Z. Wu ◽  
H. McCann ◽  
L.E. Davis ◽  
C.-G. Xie

Geophysics ◽  
2012 ◽  
Vol 77 (1) ◽  
pp. W1-W15 ◽  
Author(s):  
Juan L. Fernández Martínez ◽  
M. Zulima Fernández Muñiz ◽  
Michael J. Tompkins

We analyze, through linear algebra, the topography of the cost functional in linear and nonlinear inverse problems with the aim of illuminating general characteristics. To a first-order approximation, the local data misfit function in any inverse problem is valley-shaped and elongated in the directions of the null space of the Jacobian and/or in the directions of the smallest singular values. In nonlinear inverse problems, valleys persist; however, local minima might also coexist in the misfit space and might be related to nonlinear effects ignored by the Gauss-Newton approximation to the Hessian, the regularization term designed to provide convexity to the misfit function, or to noise in the data. Furthermore, noise perturbs the size of the equivalence region making location of solutions easier but finding a global minimum harder (in the case of existence). Understanding the behavior of the cost functional is an important step in the developing techniques to appraise inverse solutions and estimate uncertainties caused by noise, incomplete sampling, regularization, and more fundamentally, simplified physical models.


Author(s):  
Hongsun Fu ◽  
Hongbo Liu ◽  
Bo Han ◽  
Yu Yang ◽  
Yi Hu

AbstractIn this paper we discuss the construction, convergence analysis, and implementation of a proximal iteratively regularized Gauss–Newton method for the solution of nonlinear inverse problems with a specific regularization that linearly combines the


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
B. Borsos ◽  
János Karátson

Abstract The goal of this paper is to present various types of iterative solvers: gradient iteration, Newton’s method and a quasi-Newton method, for the finite element solution of elliptic problems arising in Gao type beam models (a geometrical type of nonlinearity, with respect to the Euler–Bernoulli hypothesis). Robust behaviour, i.e., convergence independently of the mesh parameters, is proved for these methods, and they are also tested with numerical experiments.


Geophysics ◽  
2019 ◽  
Vol 84 (2) ◽  
pp. R251-R269 ◽  
Author(s):  
Bas Peters ◽  
Brendan R. Smithyman ◽  
Felix J. Herrmann

Nonlinear inverse problems are often hampered by local minima because of missing low frequencies and far offsets in the data, lack of access to good starting models, noise, and modeling errors. A well-known approach to counter these deficiencies is to include prior information on the unknown model, which regularizes the inverse problem. Although conventional regularization methods have resulted in enormous progress in ill-posed (geophysical) inverse problems, challenges remain when the prior information consists of multiple pieces. To handle this situation, we have developed an optimization framework that allows us to add multiple pieces of prior information in the form of constraints. The proposed framework is more suitable for full-waveform inversion (FWI) because it offers assurances that multiple constraints are imposed uniquely at each iteration, irrespective of the order in which they are invoked. To project onto the intersection of multiple sets uniquely, we use Dykstra’s algorithm that does not rely on trade-off parameters. In that sense, our approach differs substantially from approaches, such as Tikhonov/penalty regularization and gradient filtering. None of these offer assurances, which makes them less suitable to FWI, where unrealistic intermediate results effectively derail the inversion. By working with intersections of sets, we avoid trade-off parameters and keep objective calculations separate from projections that are often much faster to compute than objectives/gradients in 3D. These features allow for easy integration into existing code bases. Working with constraints also allows for heuristics, where we built up the complexity of the model by a gradual relaxation of the constraints. This strategy helps to avoid convergence to local minima that represent unrealistic models. Using multiple constraints, we obtain better FWI results compared with a quadratic penalty method, whereas all definitions of the constraints are in terms of physical units and follow from the prior knowledge directly.


Sign in / Sign up

Export Citation Format

Share Document