Anti-Saturation-Based Adaptive Sliding-Mode Control for Active Suspension Systems With Time-Varying Vertical Displacement and Speed Constraints

2021 ◽  
pp. 1-11
Author(s):  
Hao Chen ◽  
Yan-Jun Liu ◽  
Lei Liu ◽  
Shaocheng Tong ◽  
Zhiwei Gao
2019 ◽  
Vol 26 (11-12) ◽  
pp. 952-964 ◽  
Author(s):  
Wu Qin ◽  
Wen-Bin Shangguan ◽  
Kegang Zhao

Based on a nonlinear two-degree-of-freedom model of active suspension systems, an approach of the sliding mode control with disturbance observer combining skyhook model sliding mode control with disturbance observer combining is proposed for improving the performance of active suspension systems, and the effectiveness of the proposed approach is validated by the active suspension system plant. Two problems of active suspension systems are solved by using the proposed approach when the tire is excited by the step displacement. One problem is that the suspension deflection of active suspension systems, i.e. the difference between the sprung mass displacement and the unsprung mass displacement, using conventional sliding mode control with disturbance observer not converges to zero in finite time, and the phenomenon of the impact of suspension against the limit block is produced. This problem is solved by providing a reference value of the sprung mass displacement in an active suspension system, which is obtained from the skyhook model. The other problem is that disturbances exist in active suspension systems, which are caused by the inaccurate parameters of stiffness and damping. This problem is solved by designing a disturbance observer to estimate the summation of the disturbances. Finally, the performance indexes of the active suspension system with the sliding mode control with disturbance observer combining skyhook model are calculated and compared with those of using the conventional sliding mode control with disturbance observer and the linear quadratic regulator approach.


Sign in / Sign up

Export Citation Format

Share Document