A suitable dynamic stability index for power systems using PMU data

Author(s):  
Ali Iravani ◽  
M. Karrari ◽  
S. Karrari
Author(s):  
Souhil Mouassa ◽  
Tarek Bouktir

Purpose In the vast majority of published papers, the optimal reactive power dispatch (ORPD) problem is dealt as a single-objective optimization; however, optimization with a single objective is insufficient to achieve better operation performance of power systems. Multi-objective ORPD (MOORPD) aims to minimize simultaneously either the active power losses and voltage stability index, or the active power losses and the voltage deviation. The purpose of this paper is to propose multi-objective ant lion optimization (MOALO) algorithm to solve multi-objective ORPD problem considering large-scale power system in an effort to achieve a good performance with stable and secure operation of electric power systems. Design/methodology/approach A MOALO algorithm is presented and applied to solve the MOORPD problem. Fuzzy set theory was implemented to identify the best compromise solution from the set of the non-dominated solutions. A comparison with enhanced version of multi-objective particle swarm optimization (MOEPSO) algorithm and original (MOPSO) algorithm confirms the solutions. An in-depth analysis on the findings was conducted and the feasibility of solutions were fully verified and discussed. Findings Three test systems – the IEEE 30-bus, IEEE 57-bus and large-scale IEEE 300-bus – were used to examine the efficiency of the proposed algorithm. The findings obtained amply confirmed the superiority of the proposed approach over the multi-objective enhanced PSO and basic version of MOPSO. In addition to that, the algorithm is benefitted from good distributions of the non-dominated solutions and also guarantees the feasibility of solutions. Originality/value The proposed algorithm is applied to solve three versions of ORPD problem, active power losses, voltage deviation and voltage stability index, considering large -scale power system IEEE 300 bus.


Processes ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 433 ◽  
Author(s):  
Jiangbei Han ◽  
Zhijian Liu ◽  
Ning Liang ◽  
Qi Song ◽  
Pengcheng Li

With the increasing penetration of the hybrid AC/DC microgrid in power systems, an inertia decrease of the microgrid is caused. Many scholars have put forward the concept of a virtual synchronous generator, which enables the converters of the microgrid to possess the characteristics of a synchronous generator, thus providing inertia support for the microgrid. Nevertheless, the problems of active power oscillation and unbalance would be serious when multiple virtual synchronous generators (VSGs) operate in the microgrid. To conquer these problems, a VSG-based autonomous power-frequency control strategy is proposed, which not only independently allocates the power grid capacity according to the load capacity, but also effectively suppresses the active power oscillation. In addition, by establishing a dynamic small-signal model of the microgrid, the dynamic stability of the proposed control strategy in the microgrid is verified, and further reveals the leading role of the VSG and filter in the dynamic stability of microgrids. Finally, the feasibility and effectiveness of the proposed control strategy are validated by the simulation results.


1991 ◽  
Vol 27 (2) ◽  
pp. 2349-2352 ◽  
Author(s):  
Y. Mitani ◽  
K. Tsuji ◽  
Y. Murakami

2007 ◽  
Vol 307 (3-5) ◽  
pp. 495-512 ◽  
Author(s):  
Parthajit Mukherjee ◽  
Bhaskar Dasgupta ◽  
A.K. Mallik

2013 ◽  
Vol 394 ◽  
pp. 546-553 ◽  
Author(s):  
Fabrizio Mazzetto ◽  
Marco Bietresato ◽  
Renato Vidoni

The safety of agricultural tractors drivers is a very actual topic, especially when tractors operate on side slopes, such as in terraced vineyards. This work approaches the stability problem of articulated tractors by modelling, simulating and quantifying the safety of the driver with respect to both roll and pitch overturns. First of all, an articulated tractor has been modelled and simplified, after that a stability index has been defined and calculatedin several simulated slope conditions when the tractor travels along a circular trajectory; then, the obtained results have beencompared with respect to a conventional tractor. This work is a preliminary studyfor a tilting test platform for real vehicles, capable to reproduce real field conditions (slope, obstacles, roughness). Finally, some directives on how exploiting the obtained results for real-time safety devices have been formulated.


1984 ◽  
Vol 7 (4) ◽  
pp. 297-306
Author(s):  
Michele Brucoli ◽  
Roberto Napoli ◽  
Francesco Torelli ◽  
Michele Trovato

Sign in / Sign up

Export Citation Format

Share Document