Multi-objective optimal power flow of power system with FACTS devices using PSO algorithm

Author(s):  
Khaled M. Metweely ◽  
Gamal. A. Morsy ◽  
Ragab. A. Amer
2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
R. Vanitha ◽  
J. Baskaran

A new Fuzzy Differential Evolution (FDE) algorithm is proposed for solving multiobjective optimal power flow with FACTS devices. This new optimization technique combines the advantages of Weighted Additive Fuzzy Goal Programming (WAFGP) and Differential Evolution (DE) in enhancing the capacity, stability, and security of the power system. As the weights used in WAFGP would have a significant impact on the operational and economical enhancements achieved in the optimization, they are optimized using evolutionary DE algorithm. This provides a way for exploring a balanced solution for a multiobjective problem without sacrificing any individual objective’s uniqueness and priority. The multiple objectives considered are maximizing the loadability condition of the power system with minimum system real power loss and minimum installation cost of the FACTS devices. Indian utility Neyveli Thermal Power Station (NTPS) 23 bus system is used to test the proposed algorithm using multiple FACTS devices. The results compared with that of DE based fuzzy goal programming (FGP) demonstrates that DE based WAFGP algorithm not only provides a balanced optimal solution for all objectives but also provides the best economical solution.


2018 ◽  
Vol 54 (3A) ◽  
pp. 52
Author(s):  
Duong Thanh Long

Optimal Power Flow (OPF) problem is an optimization tool through which secure and economic operating conditions of power system is obtained. In recent years, Flexible AC Transmission System (FACTS) devices, have led to the development of controllers that provide controllability and flexibility for power transmission. Series FACTS devices such as Thyristor controlled series compensators (TCSC), with its ability to directly control the power flow can be very effective to power system security. Thus, integration TCSC in the OPF is one of important current problems and is a suitable method for better utilization of the existing system. This paper is applied Cuckoo Optimization Algorithm (COA) for the solution of the OPF problem of power system equipped with TCSC. The proposed approach has been examined and tested on the IEEE 30-bus system. The results presented in this paper demonstrate the potential of COA algorithm and show its effectiveness for solving the OPF problem with TCSC devices over the other evolutionary optimization techniques.


2016 ◽  
Vol 5 (2) ◽  
pp. 64-84 ◽  
Author(s):  
Susanta Dutta ◽  
Provas Kumar Roy ◽  
Debashis Nandi

In this paper, quasi-oppositional teaching-learning based optimization (QOTLBO) is introduced and successfully applied for solving an optimal power flow (OPF) problem in power system incorporating flexible AC transmission systems (FACTS). The main drawback of the original teaching-learning based optimization (TLBO) is that it gives a local optimal solution rather than the near global optimal one in limited iteration cycles. In this paper, opposition based learning (OBL) concept is introduced to improve the convergence speed and simulation results of TLBO. The effectiveness of the proposed method implemented with MATLAB and tested on modified IEEE 30-bus system in four different cases. The simulation results show the effectiveness and accuracy of the proposed QOTLBO algorithm over other methods like conventional BBO and hybrid biogeography-based optimization (HDE-BBO). This method gives better solution quality in finding the optimal parameter settings for FACTS devices to solve OPF problems. The simulation study also shows that using FACTS devices, it is possible to improve the quality of the electric power supply thereby providing an economically attractive solution to power system problems.


Electronics ◽  
2021 ◽  
Vol 10 (23) ◽  
pp. 2975
Author(s):  
Mohammad H. Nadimi-Shahraki ◽  
Shokooh Taghian ◽  
Seyedali Mirjalili ◽  
Laith Abualigah ◽  
Mohamed Abd Abd Elaziz ◽  
...  

The optimal power flow (OPF) is a vital tool for optimizing the control parameters of a power system by considering the desired objective functions subject to system constraints. Metaheuristic algorithms have been proven to be well-suited for solving complex optimization problems. The whale optimization algorithm (WOA) is one of the well-regarded metaheuristics that is widely used to solve different optimization problems. Despite the use of WOA in different fields of application as OPF, its effectiveness is decreased as the dimension size of the test system is increased. Therefore, in this paper, an effective whale optimization algorithm for solving optimal power flow problems (EWOA-OPF) is proposed. The main goal of this enhancement is to improve the exploration ability and maintain a proper balance between the exploration and exploitation of the canonical WOA. In the proposed algorithm, the movement strategy of whales is enhanced by introducing two new movement strategies: (1) encircling the prey using Levy motion and (2) searching for prey using Brownian motion that cooperate with canonical bubble-net attacking. To validate the proposed EWOA-OPF algorithm, a comparison among six well-known optimization algorithms is established to solve the OPF problem. All algorithms are used to optimize single- and multi-objective functions of the OPF under the system constraints. Standard IEEE 6-bus, IEEE 14-bus, IEEE 30-bus, and IEEE 118-bus test systems are used to evaluate the proposed EWOA-OPF and comparative algorithms for solving the OPF problem in diverse power system scale sizes. The comparison of results proves that the EWOA-OPF is able to solve single- and multi-objective OPF problems with better solutions than other comparative algorithms.


Sign in / Sign up

Export Citation Format

Share Document