Universal expression for the Poynting vector applicable for evanescent waves: inherent output from the method of single expression

Author(s):  
H. Baghdasaryan ◽  
T. Knyazyan ◽  
T. Hovhannisyan ◽  
M. Marciniak
2019 ◽  
Vol 51 (9) ◽  
Author(s):  
H. V. Baghdasaryan ◽  
T. M. Knyazyan ◽  
T. T. Hovhannisyan ◽  
T. Baghdasaryan ◽  
A. V. Daryan ◽  
...  

2016 ◽  
Vol 75 (15) ◽  
pp. 1355-1367
Author(s):  
E.A. Velichko ◽  
A.P. Nickolaenko
Keyword(s):  

2020 ◽  
Vol 86 (5) ◽  
pp. 65-72
Author(s):  
Yu. D. Grigoriev

The problem of constructing Q-optimal experimental designs for polynomial regression on the interval [–1, 1] is considered. It is shown that well-known Malyutov – Fedorov designs using D-optimal designs (so-called Legendre spectrum) are other than Q-optimal designs. This statement is a direct consequence of Shabados remark which disproved the Erdős hypothesis that the spectrum (support points) of saturated D-optimal designs for polynomial regression on a segment appeared to be support points of saturated Q-optimal designs. We present a saturated exact Q-optimal design for polynomial regression with s = 3 which proves the Shabados notion and then extend this statement to approximate designs. It is shown that when s = 3, 4 the Malyutov – Fedorov theorem on approximate Q-optimal design is also incorrect, though it still stands for s = 1, 2. The Malyutov – Fedorov designs with Legendre spectrum are considered from the standpoint of their proximity to Q-optimal designs. Case studies revealed that they are close enough for small degrees s of polynomial regression. A universal expression for Q-optimal distribution of the weights pi for support points xi for an arbitrary spectrum is derived. The expression is used to tabulate the distribution of weights for Malyutov – Fedorov designs at s = 3, ..., 6. The general character of the obtained expression is noted for Q-optimal weights with A-optimal weight distribution (Pukelsheim distribution) for the same problem statement. In conclusion a brief recommendation on the numerical construction of Q-optimal designs is given. It is noted that in this case in addition to conventional numerical methods some software systems of symbolic computations using methods of resultants and elimination theory can be successfully applied. The examples of Q-optimal designs considered in the paper are constructed using precisely these methods.


2015 ◽  
Vol 9 (12) ◽  
pp. 1279-1286 ◽  
Author(s):  
Ming Bai ◽  
Naiming Ou ◽  
Ming Jin ◽  
Jungang Miao

Photonics ◽  
2021 ◽  
Vol 8 (7) ◽  
pp. 283
Author(s):  
Andrey Ustinov ◽  
Svetlana Khonina ◽  
Alexey Porfirev

Recently, there has been increased interest in the shaping of light fields with an inverse energy flux to guide optically trapped nano- and microparticles towards a radiation source. To generate inverse energy flux, non-uniformly polarized laser beams, especially higher-order cylindrical vector beams, are widely used. Here, we demonstrate the use of conventional and so-called generalized spiral phase plates for the formation of light fields with an inverse energy flux when they are illuminated with linearly polarized radiation. We present an analytical and numerical study of the longitudinal and transverse components of the Poynting vector. The conditions for maximizing the negative value of the real part of the longitudinal component of the Poynting vector are obtained.


1967 ◽  
Vol 35 (2) ◽  
pp. 153-156 ◽  
Author(s):  
Emerson M. Pugh ◽  
George E. Pugh

2011 ◽  
Vol 28 (1) ◽  
pp. 263-269 ◽  
Author(s):  
Shavkat Nizamov ◽  
Vladimir M. Mirsky
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document