Physical Significance of the Poynting Vector in Static Fields

1967 ◽  
Vol 35 (2) ◽  
pp. 153-156 ◽  
Author(s):  
Emerson M. Pugh ◽  
George E. Pugh
2016 ◽  
Vol 75 (15) ◽  
pp. 1355-1367
Author(s):  
E.A. Velichko ◽  
A.P. Nickolaenko
Keyword(s):  

2016 ◽  
pp. 4039-4042
Author(s):  
Viliam Malcher

The interpretation problems of quantum theory are considered. In the formalism of quantum theory the possible states of a system are described by a state vector. The state vector, which will be represented as |ψ> in Dirac notation, is the most general form of the quantum mechanical description. The central problem of the interpretation of quantum theory is to explain the physical significance of the |ψ>. In this paper we have shown that one of the best way to make of interpretation of wave function is to take the wave function as an operator.


2015 ◽  
Vol 9 (12) ◽  
pp. 1279-1286 ◽  
Author(s):  
Ming Bai ◽  
Naiming Ou ◽  
Ming Jin ◽  
Jungang Miao

Photonics ◽  
2021 ◽  
Vol 8 (7) ◽  
pp. 283
Author(s):  
Andrey Ustinov ◽  
Svetlana Khonina ◽  
Alexey Porfirev

Recently, there has been increased interest in the shaping of light fields with an inverse energy flux to guide optically trapped nano- and microparticles towards a radiation source. To generate inverse energy flux, non-uniformly polarized laser beams, especially higher-order cylindrical vector beams, are widely used. Here, we demonstrate the use of conventional and so-called generalized spiral phase plates for the formation of light fields with an inverse energy flux when they are illuminated with linearly polarized radiation. We present an analytical and numerical study of the longitudinal and transverse components of the Poynting vector. The conditions for maximizing the negative value of the real part of the longitudinal component of the Poynting vector are obtained.


1963 ◽  
Vol 41 (10) ◽  
pp. 1702-1711 ◽  
Author(s):  
Mahendra Singh Sodha ◽  
Carl J. Palumbo

In this communication the authors have obtained an expression for current density in a slightly ionized uniform plasma in the presence of a number of electric fields of different frequencies by solving the appropriate Boltzmann's equation. This expression along with the wave equation has been used to investigate the nonlinear mutual interaction of a number of electromagnetic waves, propagating in a plasma. Limitations of the present analysis have also been indicated and the physical significance of the results has been discussed. The technique has also been applied to investigate the mutual interaction of amplitude-modulated waves, and the results express a generalization of Luxembourg effect to a number of strong modulated waves.


1964 ◽  
Vol 136 (4B) ◽  
pp. B1221-B1224 ◽  
Author(s):  
L. Mandel

Sign in / Sign up

Export Citation Format

Share Document