Plasma and material temperature/emissivity knowledge by applied physics technique based on compact VNIR emission spectroscopy in aerospace re-entry

Author(s):  
Luigi Savino ◽  
Antonio Del Vecchio ◽  
Mario De Cesare
Author(s):  
R. F. Egerton

An important parameter governing the sensitivity and accuracy of elemental analysis by electron energy-loss spectroscopy (EELS) or by X-ray emission spectroscopy is the signal/noise ratio of the characteristic signal.


Author(s):  
Gertrude F. Rempfer

I became involved in electron optics in early 1945, when my husband Robert and I were hired by the Farrand Optical Company. My husband had a mathematics Ph.D.; my degree was in physics. My main responsibilities were connected with the development of an electrostatic electron microscope. Fortunately, my thesis research on thermionic and field emission, in the late 1930s under the direction of Professor Joseph E. Henderson at the University of Washington, provided a foundation for dealing with electron beams, high vacuum, and high voltage.At the Farrand Company my co-workers and I used an electron-optical bench to carry out an extensive series of tests on three-electrode electrostatic lenses, as a function of geometrical and voltage parameters. Our studies enabled us to select optimum designs for the lenses in the electron microscope. We early on discovered that, in general, electron lenses are not “thin” lenses, and that aberrations of focal point and aberrations of focal length are not the same. I found electron optics to be an intriguing blend of theory and experiment. A laboratory version of the electron microscope was built and tested, and a report was given at the December 1947 EMSA meeting. The micrograph in fig. 1 is one of several which were presented at the meeting. This micrograph also appeared on the cover of the January 1949 issue of Journal of Applied Physics. These were exciting times in electron microscopy; it seemed that almost everything that happened was new. Our opportunities to publish were limited to patents because Mr. Farrand envisaged a commercial instrument. Regrettably, a commercial version of our laboratory microscope was not produced.


2007 ◽  
Vol 14 (1) ◽  
pp. 42 ◽  
Author(s):  
TRAN DUC THIEP ◽  
NGUYEN VAN DO ◽  
NGUYEN KHAC THI ◽  
TRUONG THI AN ◽  
NGUYEN NGOC SON

Mictrorons are accelerators of electrons and are simultaneous sources of bremsstrahlung photon flux and fission neutrons. In 1982, a microtron of seventeen trajectories Microtron MT - 17 was put into operation at the National Institute of Physics of Vietnam. Though very modest, microtons are very useful for developing countries such as Vietnam in both fundamental and applied physics research. During the recent years by using the above mentioned MT - 17 and microtrons from other institutes we have carried out different investigations. In this report we present some results obtained in the studies of photonuclear reactions and photon activation analysis in the giant dipole resonance region.


Sign in / Sign up

Export Citation Format

Share Document