scholarly journals Bounded angle iterative decoding of LDPC codes

Author(s):  
Sam Dolinar ◽  
Kenneth Andrews ◽  
Fabrizio Pollara ◽  
Dariush Divsalar
2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Muhammad Asif ◽  
Wuyang Zhou ◽  
Qingping Yu ◽  
Xingwang Li ◽  
Nauman Ali Khan

This correspondence presents a jointly designed quasicyclic (QC) low-density parity-check (LDPC) coded-relay cooperation with joint-iterative decoding in the destination node. Firstly, a design-theoretic construction of QC-LDPC codes based on a combinatoric design approach known as optical orthogonal codes (OOC) is presented. Proposed OOC-based construction gives three classes of binary QC-LDPC codes with no length-4 cycles by utilizing some known ingredients including binary matrix dispersion of elements of finite field, incidence matrices, and circulant decomposition. Secondly, the proposed OOC-based construction gives an effective method to jointly design length-4 cycles free QC-LDPC codes for coded-relay cooperation, where sum-product algorithm- (SPA-) based joint-iterative decoding is used to decode the corrupted sequences coming from the source or relay nodes in different time frames over constituent Rayleigh fading channels. Based on the theoretical analysis and simulation results, proposed QC-LDPC coded-relay cooperations outperform their competitors under same conditions over the Rayleigh fading channel with additive white Gaussian noise.


Author(s):  
Juane Li ◽  
Shu Lin ◽  
Khaled Abdel-Ghaffar ◽  
William E. Ryan ◽  
Daniel J. Jr Costello

2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Muhammad Asif ◽  
Wuyang Zhou ◽  
Muhammad Ajmal ◽  
Zain ul Abiden Akhtar ◽  
Nauman Ali Khan

This correspondence presents a construction of quasicyclic (QC) low-density parity-check (LDPC) codes based on a special type of combinatorial designs known as block disjoint difference families (BDDFs). The proposed construction of QC-LDPC codes gives parity-check matrices with column weight three and Tanner graphs having a girth lower-bounded by 6. The proposed QC-LDPC codes provide an excellent performance with iterative decoding over an additive white Gaussian-noise (AWGN) channel. Performance analysis shows that the proposed short and moderate length QC-LDPC codes perform as well as their competitors in the lower signal-to-noise ratio (SNR) region but outperform in the higher SNR region. Also, the codes constructed are quasicyclic in nature, so the encoding can be done with simple shift-register circuits with linear complexity.


2013 ◽  
Vol 61 (6) ◽  
pp. 2128-2137
Author(s):  
Chao Chen ◽  
Baoming Bai ◽  
Xinquan Yang ◽  
Li Li ◽  
Yang Yang

Sign in / Sign up

Export Citation Format

Share Document