erasure channel
Recently Published Documents


TOTAL DOCUMENTS

250
(FIVE YEARS 36)

H-INDEX

22
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Xianyu Wang ◽  
Cong Li ◽  
Jinlin Tan ◽  
Rui Zhang ◽  
Zhifeng Liang ◽  
...  

Abstract In this paper, the Binary Erasure Channel (BEC) is researched by Distributed Arithmetic Coding (DAC) based on Slepian-Wolf coding framework. The source and side information are modelled as a virtual BEC. The DAC decoder uses maximum a posteriori (MAP) as the criterion to recover the source. A deep residual network is used to boost the DAC decoding process. The experimental results show that our algorithm nearly achieves the same performance with LT codes under different erasure probabilities.


2021 ◽  
Vol 21 (7&8) ◽  
pp. 577-606
Author(s):  
Ashutosh Goswami ◽  
Mehdi Mhalla ◽  
Valentin Savin

Recently, a purely quantum version of polar codes has been proposed in~\cite{DGMS19} based on a quantum channel combining and splitting procedure, where a randomly chosen two-qubit Clifford unitary acts as a channel combining operation. Here, we consider the quantum polar code construction using the same channel combining and splitting procedure as in~\cite{DGMS19}, but with a fixed two-qubit Clifford unitary. For the family of Pauli channels, we show that polarization happens in multi-levels, where synthesized quantum virtual channels tend to become completely noisy, half-noisy, or noiseless. Further, we present a quantum polar code exploiting the multilevel nature of polarization, and provide an efficient decoding for this code. We show that half-noisy channels can be frozen by fixing their inputs in either the amplitude or the phase basis, which allows reducing the number of preshared EPR pairs compared to the construction in~\cite{DGMS19}. We provide an upper bound on the number of preshared EPR pairs, which is an equality in the case of the quantum erasure channel. To improve the speed of polarization, we propose an alternative construction, which again polarizes in multi-levels, and the previous upper bound on the number of preshared EPR pairs also holds. For a quantum erasure channel, we confirm by numerical analysis that the multilevel polarization happens relatively faster for the alternative construction.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 2976
Author(s):  
Vlad-Florin Drăgoi ◽  
Gabriela Cristescu

Monomial codes were recently equipped with partial order relations, a fact that allowed researchers to discover structural properties and efficient algorithm for constructing polar codes. Here, we refine the existing order relations in the particular case of the binary erasure channel. The new order relation takes us closer to the ultimate order relation induced by the pointwise evaluation of the Bhattacharyya parameter of the synthetic channels, which is still a partial order relation. To overcome this issue, we appeal to a related technique from network theory. Reliability network theory was recently used in the context of polar coding and more generally in connection with decreasing monomial codes. In this article, we investigate how the concept of average reliability is applied for polar codes designed for the binary erasure channel. Instead of minimizing the error probability of the synthetic channels, for a particular value of the erasure parameter p, our codes minimize the average error probability of the synthetic channels. By means of basic network theory results, we determine a closed formula for the average reliability of a particular synthetic channel, that recently gain the attention of researchers.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Julia Lieb ◽  
Raquel Pinto

<p style='text-indent:20px;'>Two-dimensional (2D) convolutional codes are a generalization of (1D) convolutional codes, which are suitable for transmission over an erasure channel. In this paper, we present a decoding algorithm for 2D convolutional codes over such a channel by reducing the decoding process to several decoding steps applied to 1D convolutional codes. Moreover, we provide constructions of 2D convolutional codes that are specially tailored to our decoding algorithm.</p>


Sign in / Sign up

Export Citation Format

Share Document