Dual-channel Laser Measuring system Study

Author(s):  
Hristo Radev ◽  
Dimitar Diakov ◽  
Hristiana Nikolova ◽  
Rositsa Miteva ◽  
Velizar Vassilev
2014 ◽  
Vol 7 (6) ◽  
pp. 6359-6384 ◽  
Author(s):  
D. Tátrai ◽  
Z. Bozóki ◽  
H. Smit ◽  
C. Rolf ◽  
N. Spelten ◽  
...  

Abstract. This paper describes a tunable diode laser based dual channel photoacoustic (PA) humidity measuring system called WaSul-Hygro primarily designed for aircraft based environment research. It is calibrated for total pressures and water vapor (WV) volume mixing ratios (VMRs) possible during airborne applications. WV VMR is calculated by using pressure dependent calibration curves and a cubic spline interpolation method. Coverage of the entire atmospheric humidity concentration range which might be encountered during airborne measurements is facilitated by applying an automated sensitivity mode switching algorithm. The calibrated PA system was validated through laboratory and airborne inter-comparisons, which proved that the repeatability, the estimated accuracy and the response time of the system is 0.5 ppmV or 0.5% of the actual reading (whichever value is the greater), 5% of the actual reading within the VMR range of 1–12 000 ppmV and 2 s, respectively. The upper detection limit of the system is about 85 000 ppmV, limited only by condensation of water vapor on the walls of the 318 K heated PA cells and inlet lines. The unique advantage of the presented system is its applicability for simultaneous water vapor and total water volume mixing ratio measurements.


2015 ◽  
Vol 8 (1) ◽  
pp. 33-42 ◽  
Author(s):  
D. Tátrai ◽  
Z. Bozóki ◽  
H. Smit ◽  
C. Rolf ◽  
N. Spelten ◽  
...  

Abstract. This paper describes a tunable diode laser-based dual-channel photoacoustic (PA) humidity measuring system primarily designed for aircraft-based environment research. It is calibrated for total pressure and water vapor (WV) volume mixing ratios (VMRs) possible during airborne applications. WV VMR is calculated by using pressure-dependent calibration curves and a cubic spline interpolation method. Coverage of the entire atmospheric humidity concentration range that might be encountered during airborne measurements is facilitated by applying an automated sensitivity mode switching algorithm. The calibrated PA system was validated through laboratory and airborne intercomparisons, which proved that the repeatability, the estimated accuracy and the response time of the system are 0.5 ppmV or 0.5% of the actual reading (whichever value is the greater), 5% of the actual reading within the VMR range of 1–12 000 ppmV and 2 s, respectively. The upper detection limit of the system is theoretically about 85 000 ppmV, limited only by condensation of water vapor on the walls of the 318 K heated PA cells and inlet lines, and was experimentally verified up to 20 000 ppmV. The unique advantage of the presented system is its applicability for simultaneous water vapor and total water volume mixing ratio measurements.


Author(s):  
JAMES E. BROWN ◽  
CARMINE M. BERTONE ◽  
RICHARD W. OBERMAYER
Keyword(s):  

2020 ◽  
pp. 38-44
Author(s):  
A. V. Polyakov ◽  
M. A. Ksenofontov

Optical technologies for measuring electrical quantities attract great attention due to their unique properties and significant advantages over other technologies used in high-voltage electric power industry: the use of optical fibers ensures high stability of measuring equipment to electromagnetic interference and galvanic isolation of high-voltage sensors; external electromagnetic fields do not influence the data transmitted from optical sensors via fiber-optic communication lines; problems associated with ground loops are eliminated, there are no side electromagnetic radiation and crosstalk between the channels. The structure and operation principle of a quasi-distributed fiber-optic high-voltage monitoring system is presented. The sensitive element is a combination of a piezo-ceramic tube with an optical fiber wound around it. The device uses reverse transverse piezoelectric effect. The measurement principle is based on recording the change in the recirculation frequency under the applied voltage influence. When the measuring sections are arranged in ascending order of the measured effective voltages relative to the receiving-transmitting unit, a relative resolution of 0,3–0,45 % is achieved for the PZT-5H and 0,8–1,2 % for the PZT-4 in the voltage range 20–150 kV.


2020 ◽  
Vol 29 (8) ◽  
pp. 57-61
Author(s):  
V.Y. Chernykh ◽  
◽  
E.V. Karpushina ◽  
N. Yu. Bykova ◽  
A.S. Maksimov ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document