Finite time stability of singularly impulsive dynamical systems

Author(s):  
Natasa A. Kablar
2009 ◽  
Vol 54 (4) ◽  
pp. 861-865 ◽  
Author(s):  
R. Ambrosino ◽  
F. Calabrese ◽  
C. Cosentino ◽  
G. De Tommasi

Author(s):  
Wassim M. Haddad ◽  
Sergey G. Nersesov

This chapter describes sufficient conditions for finite-time stability of nonlinear impulsive dynamical systems. For impulsive dynamical systems, it may be possible to reset the system states to an equilibrium state, in which case finite-time convergence of the system trajectories can be achieved without the requirement of non-Lipschitzian dynamics. Furthermore, due to system resettings, impulsive dynamical systems may exhibit non-uniqueness of solutions in reverse time even when the continuous-time dynamics are Lipschitz continuous. The chapter presents stability results using vector Lyapunov functions wherein finite-time stability of the impulsive system is guaranteed via finite-time stability of a hybrid vector comparison system. These results are used to develop hybrid finite-time stabilizing controllers for impulsive dynamical systems. Decentralized finite-time stabilizers for large-scale impulsive dynamical systems are also constructed. Finally, it gives a numerical example to illustrate the utility of the proposed framework.


Sign in / Sign up

Export Citation Format

Share Document