Summarizing video using non-negative similarity matrix factorization

Author(s):  
M. Cooper ◽  
J. Foote
2020 ◽  
Vol 36 (20) ◽  
pp. 5061-5067
Author(s):  
Ali Akbar Jamali ◽  
Anthony Kusalik ◽  
Fang-Xiang Wu

Abstract Motivation Evidence has shown that microRNAs, one type of small biomolecule, regulate the expression level of genes and play an important role in the development or treatment of diseases. Drugs, as important chemical compounds, can interact with microRNAs and change their functions. The experimental identification of microRNA–drug interactions is time-consuming and expensive. Therefore, it is appealing to develop effective computational approaches for predicting microRNA–drug interactions. Results In this study, a matrix factorization-based method, called the microRNA–drug interaction prediction approach (MDIPA), is proposed for predicting unknown interactions among microRNAs and drugs. Specifically, MDIPA utilizes experimentally validated interactions between drugs and microRNAs, drug similarity and microRNA similarity to predict undiscovered interactions. A path-based microRNA similarity matrix is constructed, while the structural information of drugs is used to establish a drug similarity matrix. To evaluate its performance, our MDIPA is compared with four state-of-the-art prediction methods with an independent dataset and cross-validation. The results of both evaluation methods confirm the superior performance of MDIPA over other methods. Finally, the results of molecular docking in a case study with breast cancer confirm the efficacy of our approach. In conclusion, MDIPA can be effective in predicting potential microRNA–drug interactions. Availability and implementation All code and data are freely available from https://github.com/AliJam82/MDIPA. Supplementary information Supplementary data are available at Bioinformatics online.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Tian-Ru Wu ◽  
Meng-Meng Yin ◽  
Cui-Na Jiao ◽  
Ying-Lian Gao ◽  
Xiang-Zhen Kong ◽  
...  

Abstract Background MicroRNAs (miRNAs) are non-coding RNAs with regulatory functions. Many studies have shown that miRNAs are closely associated with human diseases. Among the methods to explore the relationship between the miRNA and the disease, traditional methods are time-consuming and the accuracy needs to be improved. In view of the shortcoming of previous models, a method, collaborative matrix factorization based on matrix completion (MCCMF) is proposed to predict the unknown miRNA-disease associations. Results The complete matrix of the miRNA and the disease is obtained by matrix completion. Moreover, Gaussian Interaction Profile kernel is added to the miRNA functional similarity matrix and the disease semantic similarity matrix. Then the Weight K Nearest Known Neighbors method is used to pretreat the association matrix, so the model is close to the reality. Finally, collaborative matrix factorization method is applied to obtain the prediction results. Therefore, the MCCMF obtains a satisfactory result in the fivefold cross-validation, with an AUC of 0.9569 (0.0005). Conclusions The AUC value of MCCMF is higher than other advanced methods in the fivefold cross validation experiment. In order to comprehensively evaluate the performance of MCCMF, accuracy, precision, recall and f-measure are also added. The final experimental results demonstrate that MCCMF outperforms other methods in predicting miRNA-disease associations. In the end, the effectiveness and practicability of MCCMF are further verified by researching three specific diseases.


2022 ◽  
Vol 40 (2) ◽  
pp. 1-36
Author(s):  
Lei Zhu ◽  
Chaoqun Zheng ◽  
Xu Lu ◽  
Zhiyong Cheng ◽  
Liqiang Nie ◽  
...  

Multi-modal hashing supports efficient multimedia retrieval well. However, existing methods still suffer from two problems: (1) Fixed multi-modal fusion. They collaborate the multi-modal features with fixed weights for hash learning, which cannot adaptively capture the variations of online streaming multimedia contents. (2) Binary optimization challenge. To generate binary hash codes, existing methods adopt either two-step relaxed optimization that causes significant quantization errors or direct discrete optimization that consumes considerable computation and storage cost. To address these problems, we first propose a Supervised Multi-modal Hashing with Online Query-adaption method. A self-weighted fusion strategy is designed to adaptively preserve the multi-modal features into hash codes by exploiting their complementarity. Besides, the hash codes are efficiently learned with the supervision of pair-wise semantic labels to enhance their discriminative capability while avoiding the challenging symmetric similarity matrix factorization. Further, we propose an efficient Unsupervised Multi-modal Hashing with Online Query-adaption method with an adaptive multi-modal quantization strategy. The hash codes are directly learned without the reliance on the specific objective formulations. Finally, in both methods, we design a parameter-free online hashing module to adaptively capture query variations at the online retrieval stage. Experiments validate the superiority of our proposed methods.


Author(s):  
Donglin Zhang ◽  
Xiao-Jun Wu ◽  
Jun Yu

Hashing methods have sparked a great revolution on large-scale cross-media search due to its effectiveness and efficiency. Most existing approaches learn unified hash representation in a common Hamming space to represent all multimodal data. However, the unified hash codes may not characterize the cross-modal data discriminatively, because the data may vary greatly due to its different dimensionalities, physical properties, and statistical information. In addition, most existing supervised cross-modal algorithms preserve the similarity relationship by constructing an n × n pairwise similarity matrix, which requires a large amount of calculation and loses the category information. To mitigate these issues, a novel cross-media hashing approach is proposed in this article, dubbed label flexible matrix factorization hashing (LFMH). Specifically, LFMH jointly learns the modality-specific latent subspace with similar semantic by the flexible matrix factorization. In addition, LFMH guides the hash learning by utilizing the semantic labels directly instead of the large n × n pairwise similarity matrix. LFMH transforms the heterogeneous data into modality-specific latent semantic representation. Therefore, we can obtain the hash codes by quantifying the representations, and the learned hash codes are consistent with the supervised labels of multimodal data. Then, we can obtain the similar binary codes of the corresponding modality, and the binary codes can characterize such samples flexibly. Accordingly, the derived hash codes have more discriminative power for single-modal and cross-modal retrieval tasks. Extensive experiments on eight different databases demonstrate that our model outperforms some competitive approaches.


2020 ◽  
Author(s):  
Tian-Ru Wu ◽  
Meng-Meng Yin ◽  
Cui-Na Jiao ◽  
Ying-Lian Gao ◽  
Xiang-Zhen Kong ◽  
...  

Abstract Background: microRNAs (miRNAs) are non-coding RNAs with regulatory functions. Many studies have shown that miRNAs are closely associated with human diseases. Among the methods to explore the relationship between the miRNA and the disease, traditional methods are time-consuming and the accuracy needs to be improved. In view of the shortcoming of previous models, a collaborative matrix factorization based on matrix completion (MCCMF) is proposed to predict the unknown miRNA-disease associations.Results: The complete matrix of the miRNA and the disease is obtained by matrix completion. Moreover, Gaussian Interaction Profile (GIP) kernel is added to the miRNA functional similarity matrix and the disease semantic similarity matrix to form the GIP kernel similarity matrix. Then the Weight K Nearest Known Neighbors (WKNKN) method is used to pretreat the association matrix, so the model is close to the reality. Finally, collaborative matrix factorization (CMF) method is applied to obtain the prediction results. Therefore, the MCCMF obtains a satisfactory result in the five-fold cross-validation, with an AUC of 0.9569(0.0005).Conclusions: The AUC value of MCCMF is higher than other advanced methods in the 5-fold cross validation experiment. In order to comprehensively evaluate the performance of MCCMF, accuracy, precision, recall and f-measure are also added. The final experimental results demonstrate that MCCMF outperforms other methods in predicting miRNA-disease associations. In the end, the effectiveness and practicability of MCCMF are further verified by researching three specific diseases.


2020 ◽  
Author(s):  
Tian-Ru Wu ◽  
Meng-Meng Yin ◽  
Cui-Na Jiao ◽  
Ying-Lian Gao ◽  
Xiang-Zhen Kong ◽  
...  

Abstract Background: MicroRNAs (MiRNAs) are non-coding RNAs with regulatory functions. Many studies have shown that miRNAs are closely associated with human diseases. Among the methods to explore the relationship between the miRNA and the disease, traditional methods are time-consuming and the accuracy needs to be improved. In view of the shortcoming of previous models, a collaborative matrix factorization based on matrix completion (MCCMF) is proposed to predict the unknown miRNA-disease associations.Results: The complete matrix of the miRNA and the disease is obtained by matrix completion. Moreover, Gaussian Interaction Profile (GIP) kernel is added to the miRNA functional similarity matrix and the disease semantic similarity matrix to form the GIP kernel similarity matrix. Then the Weight K Nearest Known Neighbors (WKNKN) method is used to pretreat the association matrix, so the model is close to the reality. Finally, collaborative matrix factorization (CMF) method is applied to obtain the prediction results. Therefore, the MCCMF obtains a satisfactory result in the five-fold cross-validation, with an AUC of 0.9569(0.0005). Conclusions: The AUC value of MCCMF is higher than other advanced methods in the 5-fold cross validation experiment. In order to comprehensively evaluate the performance of MCCMF, f-measure and other evaluation indexes are also added. The final experimental results demonstrate that MCCMF outperforms other methods in prediction miRNA-disease associations. In the end, the effectiveness and practicability of MCCMF are further verified by researching three specific diseases.


2020 ◽  
Author(s):  
Tian-Ru Wu ◽  
Meng-Meng Yin ◽  
Cui-Na Jiao ◽  
Jin-Xing Liu ◽  
Ying-Lian Gao ◽  
...  

Abstract Background: MicroRNAs (MiRNAs) are non-coding RNAs with regulatory functions. Many studies have shown that miRNAs are closely associated with human diseases. Among the methods to explore the relationship between the miRNA and the disease, traditional methods are time-consuming and the accuracy needs to be improved. In view of the shortcoming of previous models, a collaborative matrix factorization based on matrix completion (MCCMF) is proposed to predict the unknown miRNA-disease associations. Results: The complete matrix of the miRNA and the disease is obtained by matrix completion. Moreover, Gaussian Interaction Profile (GIP) kernel is added to the miRNA functional similarity matrix and the disease semantic similarity matrix to form the GIP kernel similarity matrix. Then the Weight K Nearest Known Neighbors (WKNKN) method is used to pretreat the association matrix, so the model is close to the reality. Finally, collaborative matrix factorization (CMF) method is applied to obtain the prediction results. Therefore, the MCCMF obtains a satisfactory result in the five-fold cross-validation, with an AUC of 0.9569(0.0005). Conclusions: The AUC value of MCCMF is higher than other advanced methods in the 5-fold cross validation experiment. In order to comprehensively evaluate the performance of MCCMF, f-measure and other evaluation indexes are also added. The final experimental results demonstrate that MCCMF outperforms other methods in prediction miRNA-disease associations. In the end, the effectiveness and practicability of MCCMF are further verified by researching three specific diseases.


2020 ◽  
Author(s):  
Tian-Ru Wu ◽  
Meng-Meng Yin ◽  
Cui-Na Jiao ◽  
Ying-Lian Gao ◽  
Xiang-Zhen Kong ◽  
...  

Abstract Background: microRNAs (miRNAs) are non-coding RNAs with regulatory functions. Many studies have shown that miRNAs are closely associated with human diseases. Among the methods to explore the relationship between the miRNA and the disease, traditional methods are time-consuming and the accuracy needs to be improved. In view of the shortcoming of previous models, a method, collaborative matrix factorization based on matrix completion (MCCMF) is proposed to predict the unknown miRNA-disease associations.Results: The complete matrix of the miRNA and the disease is obtained by matrix completion. Moreover, Gaussian Interaction Profile (GIP) kernel is added to the miRNA functional similarity matrix and the disease semantic similarity matrix. Then the Weight K Nearest Known Neighbors (WKNKN) method is used to pretreat the association matrix, so the model is close to the reality. Finally, collaborative matrix factorization (CMF) method is applied to obtain the prediction results. Therefore, the MCCMF obtains a satisfactory result in the five-fold cross-validation, with an AUC of 0.9569(0.0005).Conclusions: The AUC value of MCCMF is higher than other advanced methods in the 5-fold cross validation experiment. In order to comprehensively evaluate the performance of MCCMF, accuracy, precision, recall and f-measure are also added. The final experimental results demonstrate that MCCMF outperforms other methods in predicting miRNA-disease associations. In the end, the effectiveness and practicability of MCCMF are further verified by researching three specific diseases.


Algorithms ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 216 ◽  
Author(s):  
Paola Favati ◽  
Grazia Lotti ◽  
Ornella Menchi ◽  
Francesco Romani

The problem of clustering, that is, the partitioning of data into groups of similar objects, is a key step for many data-mining problems. The algorithm we propose for clustering is based on the symmetric nonnegative matrix factorization (SymNMF) of a similarity matrix. The algorithm is first presented for the case of a prescribed number k of clusters, then it is extended to the case of a not a priori given k. A heuristic approach improving the standard multistart strategy is proposed and validated by the experimentation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xibo Sun ◽  
Leiming Cheng ◽  
Jinyang Liu ◽  
Cuinan Xie ◽  
Jiasheng Yang ◽  
...  

Long non-coding RNAs (lncRNAs) are widely concerned because of their close associations with many key biological activities. Though precise functions of most lncRNAs are unknown, research works show that lncRNAs usually exert biological function by interacting with the corresponding proteins. The experimental validation of interactions between lncRNAs and proteins is costly and time-consuming. In this study, we developed a weighted graph-regularized matrix factorization (LPI-WGRMF) method to find unobserved lncRNA–protein interactions (LPIs) based on lncRNA similarity matrix, protein similarity matrix, and known LPIs. We compared our proposed LPI-WGRMF method with five classical LPI prediction methods, that is, LPBNI, LPI-IBNRA, LPIHN, RWR, and collaborative filtering (CF). The results demonstrate that the LPI-WGRMF method can produce high-accuracy performance, obtaining an AUC score of 0.9012 and AUPR of 0.7324. The case study showed that SFPQ, SNHG3, and PRPF31 may associate with Q9NUL5, Q9NUL5, and Q9UKV8 with the highest linking probabilities and need to further experimental validation.


Sign in / Sign up

Export Citation Format

Share Document