association matrix
Recently Published Documents


TOTAL DOCUMENTS

59
(FIVE YEARS 29)

H-INDEX

7
(FIVE YEARS 2)

2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaoyu Yang ◽  
Linai Kuang ◽  
Zhiping Chen ◽  
Lei Wang

Accumulating studies have shown that microbes are closely related to human diseases. In this paper, a novel method called MSBMFHMDA was designed to predict potential microbe–disease associations by adopting multi-similarities bilinear matrix factorization. In MSBMFHMDA, a microbe multiple similarities matrix was constructed first based on the Gaussian interaction profile kernel similarity and cosine similarity for microbes. Then, we use the Gaussian interaction profile kernel similarity, cosine similarity, and symptom similarity for diseases to compose the disease multiple similarities matrix. Finally, we integrate these two similarity matrices and the microbe-disease association matrix into our model to predict potential associations. The results indicate that our method can achieve reliable AUCs of 0.9186 and 0.9043 ± 0.0048 in the framework of leave-one-out cross validation (LOOCV) and fivefold cross validation, respectively. What is more, experimental results indicated that there are 10, 10, and 8 out of the top 10 related microbes for asthma, inflammatory bowel disease, and type 2 diabetes mellitus, respectively, which were confirmed by experiments and literatures. Therefore, our model has favorable performance in predicting potential microbe–disease associations.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4815
Author(s):  
Pavel Kulmon

This paper deals with bistatic track association and deghosting in the classical frequency modulation (FM)-based multi-static primary surveillance radar (MSPSR). The main contribution of this paper is a novel algorithm for bistatic track association and deghosting. The proposed algorithm is based on a hierarchical model which uses the Indian buffet process (IBP) as the prior probability distribution for the association matrix. The inference of the association matrix is then performed using the classical reversible jump Markov chain Monte Carlo (RJMCMC) algorithm with the usage of a custom set of the moves proposed by the sampler. A detailed description of the moves together with the underlying theory and the whole model is provided. Using the simulated data, the algorithm is compared with the two alternative ones and the results show the significantly better performance of the proposed algorithm in such a simulated setup. The simulated data are also used for the analysis of the properties of Markov chains produced by the sampler, such as the convergence or the posterior distribution. At the end of the paper, further research on the proposed method is outlined.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Lin Yuan ◽  
Jing Zhao ◽  
Tao Sun ◽  
Zhen Shen

Abstract Background LncRNAs (Long non-coding RNAs) are a type of non-coding RNA molecule with transcript length longer than 200 nucleotides. LncRNA has been novel candidate biomarkers in cancer diagnosis and prognosis. However, it is difficult to discover the true association mechanism between lncRNAs and complex diseases. The unprecedented enrichment of multi-omics data and the rapid development of machine learning technology provide us with the opportunity to design a machine learning framework to study the relationship between lncRNAs and complex diseases. Results In this article, we proposed a new machine learning approach, namely LGDLDA (LncRNA-Gene-Disease association networks based LncRNA-Disease Association prediction), for disease-related lncRNAs association prediction based multi-omics data, machine learning methods and neural network neighborhood information aggregation. Firstly, LGDLDA calculates the similarity matrix of lncRNA, gene and disease respectively, and it calculates the similarity between lncRNAs through the lncRNA expression profile matrix, lncRNA-miRNA interaction matrix and lncRNA-protein interaction matrix. We obtain gene similarity matrix by calculating the lncRNA-gene association matrix and the gene-disease association matrix, and we obtain disease similarity matrix by calculating the disease ontology, the disease-miRNA association matrix, and Gaussian interaction profile kernel similarity. Secondly, LGDLDA integrates the neighborhood information in similarity matrices by using nonlinear feature learning of neural network. Thirdly, LGDLDA uses embedded node representations to approximate the observed matrices. Finally, LGDLDA ranks candidate lncRNA-disease pairs and then selects potential disease-related lncRNAs. Conclusions Compared with lncRNA-disease prediction methods, our proposed method takes into account more critical information and obtains the performance improvement cancer-related lncRNA predictions. Randomly split data experiment results show that the stability of LGDLDA is better than IDHI-MIRW, NCPLDA, LncDisAP and NCPHLDA. The results on different simulation data sets show that LGDLDA can accurately and effectively predict the disease-related lncRNAs. Furthermore, we applied the method to three real cancer data including gastric cancer, colorectal cancer and breast cancer to predict potential cancer-related lncRNAs.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Zong-Lan Zuo ◽  
Rui-Fen Cao ◽  
Pi-Jing Wei ◽  
Jun-Feng Xia ◽  
Chun-Hou Zheng

Abstract Background Circular RNAs (circRNAs) are a class of single-stranded RNA molecules with a closed-loop structure. A growing body of research has shown that circRNAs are closely related to the development of diseases. Because biological experiments to verify circRNA-disease associations are time-consuming and wasteful of resources, it is necessary to propose a reliable computational method to predict the potential candidate circRNA-disease associations for biological experiments to make them more efficient. Results In this paper, we propose a double matrix completion method (DMCCDA) for predicting potential circRNA-disease associations. First, we constructed a similarity matrix of circRNA and disease according to circRNA sequence information and semantic disease information. We also built a Gauss interaction profile similarity matrix for circRNA and disease based on experimentally verified circRNA-disease associations. Then, the corresponding circRNA sequence similarity and semantic similarity of disease are used to update the association matrix from the perspective of circRNA and disease, respectively, by matrix multiplication. Finally, from the perspective of circRNA and disease, matrix completion is used to update the matrix block, which is formed by splicing the association matrix obtained in the previous step with the corresponding Gaussian similarity matrix. Compared with other approaches, the model of DMCCDA has a relatively good result in leave-one-out cross-validation and five-fold cross-validation. Additionally, the results of the case studies illustrate the effectiveness of the DMCCDA model. Conclusion The results show that our method works well for recommending the potential circRNAs for a disease for biological experiments.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Dayun Liu ◽  
Yibiao Huang ◽  
Wenjuan Nie ◽  
Jiaxuan Zhang ◽  
Lei Deng

Abstract Background Identifying miRNA and disease associations helps us understand disease mechanisms of action from the molecular level. However, it is usually blind, time-consuming, and small-scale based on biological experiments. Hence, developing computational methods to predict unknown miRNA and disease associations is becoming increasingly important. Results In this work, we develop a computational framework called SMALF to predict unknown miRNA-disease associations. SMALF first utilizes a stacked autoencoder to learn miRNA latent feature and disease latent feature from the original miRNA-disease association matrix. Then, SMALF obtains the feature vector of representing miRNA-disease by integrating miRNA functional similarity, miRNA latent feature, disease semantic similarity, and disease latent feature. Finally, XGBoost is utilized to predict unknown miRNA-disease associations. We implement cross-validation experiments. Compared with other state-of-the-art methods, SAMLF achieved the best AUC value. We also construct three case studies, including hepatocellular carcinoma, colon cancer, and breast cancer. The results show that 10, 10, and 9 out of the top ten predicted miRNAs are verified in MNDR v3.0 or miRCancer, respectively. Conclusion The comprehensive experimental results demonstrate that SMALF is effective in identifying unknown miRNA-disease associations.


2021 ◽  
Author(s):  
Lin Yuan ◽  
Jing Zhao ◽  
Tao Sun ◽  
Zhen Shen

Abstract Background: LncRNAs (Long non-coding RNAs) are a type of non-coding RNA molecule with transcript length longer than 200 nucleotides. LncRNA has been novel candidate biomarkers in cancer diagnosis and prognosis. However, it is difficult to discover the true association mechanism between lncRNAs and complex diseases. The unprecedented enrichment of multi-omics data and the rapid development of machine learning technology provide us with the opportunity to design a machine learning framework to study the relationship between lncRNAs and complex diseases. Results: In this article, we proposed a new machine learning approach, namely LGDLDA (LncRNA-Gene-Disease association networks based LncRNA-Disease Association prediction), for disease-related lncRNAs association prediction based multi-omics data, machine learning methods and neural network neighborhood information aggregation. Firstly, LGDLDA calculates the similarity matrix of lncRNA, gene and disease respectively. LGDLDA calculates the similarity between lncRNAs through the lncRNA expression profile matrix, lncRNA-miRNA interaction matrix and lncRNA-protein interaction matrix. LGDLDA obtains gene similarity matrix by calculating the lncRNA-gene association matrix and the gene-disease association matrix. LGDLDA obtains disease similarity matrix by calculating the disease ontology, the disease-miRNA association matrix, and Gaussian interaction profile kernel similarity. Secondly, LGDLDA integrates the neighborhood information in similarity matrices by using nonlinear feature learning of neural network. Thirdly, LGDLDA uses embedded node representations to approximate the observed matrices. Finally, LGDLDA ranks candidate lncRNA-disease pairs and then selects potential disease-related lncRNAs. Conclusions: Compared with lncRNA-disease prediction methods, IHI-BMLLR takes into account more critical information and obtains the performance improvement cancer-related lncRNA predictions. Randomly split data experiment results show that the stability of LGDLDA is better than IDHI-MIRW, NCPLDA, LncDisAP and NCPHLDA. The results on different simulation data sets show that LGDLDA can accurately and effectively predict the disease-related lncRNAs. Furthermore, we applied LGDLDA to three real cancer data including gastric cancer, colorectal cancer and breast cancer to predict potential cancer-related lncRNAs.


2021 ◽  
Author(s):  
Guobo Xie ◽  
Jianming Li ◽  
Guosheng Gu ◽  
Yuping Sun ◽  
Zhiyi Lin ◽  
...  

Drug repositioning, a method that relies on the information from the original drug-disease association matrix, aims to identify new indications for existing drugs and will greatly reduce the cost and...


2021 ◽  
Vol 257 ◽  
pp. 02070
Author(s):  
Xin Wang ◽  
Bo Luo ◽  
Qian Yu Mao ◽  
Hui Zhang

Outsourcing of specialized engineering services has become one of the routes to the innovation and high-quality development of the commercial model of coal production enterprises in China. Currently, although there is practice, no scale-up development has been achieved.In this paper, based on modular theory, under the condition of unknown expert weights, triangular fuzzy number method is used to construct a service unit association relationship evaluation model, and the correlation matrix is calculated. Then, a genetic algorithm is used to cluster the association matrix and obtain the results of the division of the outsourced module of engineering services. Finally, the proposed method is validated using the coal mine development process of coal producers as an example.


Author(s):  
B. A. TULEGENOVA ◽  
◽  
E. N. AMIRGALIYEV ◽  
L. SH. CHERIKBAYEVA ◽  
V. B. BERIKOV ◽  
...  

The paper is devoted to solve the pattern recognition problem with incomplete learning data. The solution method, which combines similarity graph with Laplacian Regularization and collective clustering is proposed. The low-rank decomposition of co-association matrix for cluster ensemble is used, which allows to speed up the computations and keep memory. Experimental results on test tasks and on real hyperspectral image demonstrate the effectiveness of proposed method, including with noisy data.


Author(s):  
Mengyun Yang ◽  
Gaoyan Wu ◽  
Qichang Zhao ◽  
Yaohang Li ◽  
Jianxin Wang

Abstract With the development of high-throughput technology and the accumulation of biomedical data, the prior information of biological entity can be calculated from different aspects. Specifically, drug–drug similarities can be measured from target profiles, drug–drug interaction and side effects. Similarly, different methods and data sources to calculate disease ontology can result in multiple measures of pairwise disease similarities. Therefore, in computational drug repositioning, developing a dynamic method to optimize the fusion process of multiple similarities is a crucial and challenging task. In this study, we propose a multi-similarities bilinear matrix factorization (MSBMF) method to predict promising drug-associated indications for existing and novel drugs. Instead of fusing multiple similarities into a single similarity matrix, we concatenate these similarity matrices of drug and disease, respectively. Applying matrix factorization methods, we decompose the drug–disease association matrix into a drug-feature matrix and a disease-feature matrix. At the same time, using these feature matrices as basis, we extract effective latent features representing the drug and disease similarity matrices to infer missing drug–disease associations. Moreover, these two factored matrices are constrained by non-negative factorization to ensure that the completed drug–disease association matrix is biologically interpretable. In addition, we numerically solve the MSBMF model by an efficient alternating direction method of multipliers algorithm. The computational experiment results show that MSBMF obtains higher prediction accuracy than the state-of-the-art drug repositioning methods in cross-validation experiments. Case studies also demonstrate the effectiveness of our proposed method in practical applications. Availability: The data and code of MSBMF are freely available at https://github.com/BioinformaticsCSU/MSBMF. Corresponding author: Jianxin Wang, School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, P. R. China. E-mail: [email protected] Supplementary Data: Supplementary data are available online at https://academic.oup.com/bib.


Sign in / Sign up

Export Citation Format

Share Document