scholarly journals MCCMF: Collaborative matrix factorization based on matrix completion for predicting miRNA-disease associations

2020 ◽  
Author(s):  
Tian-Ru Wu ◽  
Meng-Meng Yin ◽  
Cui-Na Jiao ◽  
Jin-Xing Liu ◽  
Ying-Lian Gao ◽  
...  

Abstract Background: MicroRNAs (MiRNAs) are non-coding RNAs with regulatory functions. Many studies have shown that miRNAs are closely associated with human diseases. Among the methods to explore the relationship between the miRNA and the disease, traditional methods are time-consuming and the accuracy needs to be improved. In view of the shortcoming of previous models, a collaborative matrix factorization based on matrix completion (MCCMF) is proposed to predict the unknown miRNA-disease associations. Results: The complete matrix of the miRNA and the disease is obtained by matrix completion. Moreover, Gaussian Interaction Profile (GIP) kernel is added to the miRNA functional similarity matrix and the disease semantic similarity matrix to form the GIP kernel similarity matrix. Then the Weight K Nearest Known Neighbors (WKNKN) method is used to pretreat the association matrix, so the model is close to the reality. Finally, collaborative matrix factorization (CMF) method is applied to obtain the prediction results. Therefore, the MCCMF obtains a satisfactory result in the five-fold cross-validation, with an AUC of 0.9569(0.0005). Conclusions: The AUC value of MCCMF is higher than other advanced methods in the 5-fold cross validation experiment. In order to comprehensively evaluate the performance of MCCMF, f-measure and other evaluation indexes are also added. The final experimental results demonstrate that MCCMF outperforms other methods in prediction miRNA-disease associations. In the end, the effectiveness and practicability of MCCMF are further verified by researching three specific diseases.

2020 ◽  
Author(s):  
Tian-Ru Wu ◽  
Meng-Meng Yin ◽  
Cui-Na Jiao ◽  
Ying-Lian Gao ◽  
Xiang-Zhen Kong ◽  
...  

Abstract Background: MicroRNAs (MiRNAs) are non-coding RNAs with regulatory functions. Many studies have shown that miRNAs are closely associated with human diseases. Among the methods to explore the relationship between the miRNA and the disease, traditional methods are time-consuming and the accuracy needs to be improved. In view of the shortcoming of previous models, a collaborative matrix factorization based on matrix completion (MCCMF) is proposed to predict the unknown miRNA-disease associations.Results: The complete matrix of the miRNA and the disease is obtained by matrix completion. Moreover, Gaussian Interaction Profile (GIP) kernel is added to the miRNA functional similarity matrix and the disease semantic similarity matrix to form the GIP kernel similarity matrix. Then the Weight K Nearest Known Neighbors (WKNKN) method is used to pretreat the association matrix, so the model is close to the reality. Finally, collaborative matrix factorization (CMF) method is applied to obtain the prediction results. Therefore, the MCCMF obtains a satisfactory result in the five-fold cross-validation, with an AUC of 0.9569(0.0005). Conclusions: The AUC value of MCCMF is higher than other advanced methods in the 5-fold cross validation experiment. In order to comprehensively evaluate the performance of MCCMF, f-measure and other evaluation indexes are also added. The final experimental results demonstrate that MCCMF outperforms other methods in prediction miRNA-disease associations. In the end, the effectiveness and practicability of MCCMF are further verified by researching three specific diseases.


2020 ◽  
Author(s):  
Tian-Ru Wu ◽  
Meng-Meng Yin ◽  
Cui-Na Jiao ◽  
Ying-Lian Gao ◽  
Xiang-Zhen Kong ◽  
...  

Abstract Background: microRNAs (miRNAs) are non-coding RNAs with regulatory functions. Many studies have shown that miRNAs are closely associated with human diseases. Among the methods to explore the relationship between the miRNA and the disease, traditional methods are time-consuming and the accuracy needs to be improved. In view of the shortcoming of previous models, a collaborative matrix factorization based on matrix completion (MCCMF) is proposed to predict the unknown miRNA-disease associations.Results: The complete matrix of the miRNA and the disease is obtained by matrix completion. Moreover, Gaussian Interaction Profile (GIP) kernel is added to the miRNA functional similarity matrix and the disease semantic similarity matrix to form the GIP kernel similarity matrix. Then the Weight K Nearest Known Neighbors (WKNKN) method is used to pretreat the association matrix, so the model is close to the reality. Finally, collaborative matrix factorization (CMF) method is applied to obtain the prediction results. Therefore, the MCCMF obtains a satisfactory result in the five-fold cross-validation, with an AUC of 0.9569(0.0005).Conclusions: The AUC value of MCCMF is higher than other advanced methods in the 5-fold cross validation experiment. In order to comprehensively evaluate the performance of MCCMF, accuracy, precision, recall and f-measure are also added. The final experimental results demonstrate that MCCMF outperforms other methods in predicting miRNA-disease associations. In the end, the effectiveness and practicability of MCCMF are further verified by researching three specific diseases.


2020 ◽  
Author(s):  
Tian-Ru Wu ◽  
Meng-Meng Yin ◽  
Cui-Na Jiao ◽  
Ying-Lian Gao ◽  
Xiang-Zhen Kong ◽  
...  

Abstract Background: microRNAs (miRNAs) are non-coding RNAs with regulatory functions. Many studies have shown that miRNAs are closely associated with human diseases. Among the methods to explore the relationship between the miRNA and the disease, traditional methods are time-consuming and the accuracy needs to be improved. In view of the shortcoming of previous models, a method, collaborative matrix factorization based on matrix completion (MCCMF) is proposed to predict the unknown miRNA-disease associations.Results: The complete matrix of the miRNA and the disease is obtained by matrix completion. Moreover, Gaussian Interaction Profile (GIP) kernel is added to the miRNA functional similarity matrix and the disease semantic similarity matrix. Then the Weight K Nearest Known Neighbors (WKNKN) method is used to pretreat the association matrix, so the model is close to the reality. Finally, collaborative matrix factorization (CMF) method is applied to obtain the prediction results. Therefore, the MCCMF obtains a satisfactory result in the five-fold cross-validation, with an AUC of 0.9569(0.0005).Conclusions: The AUC value of MCCMF is higher than other advanced methods in the 5-fold cross validation experiment. In order to comprehensively evaluate the performance of MCCMF, accuracy, precision, recall and f-measure are also added. The final experimental results demonstrate that MCCMF outperforms other methods in predicting miRNA-disease associations. In the end, the effectiveness and practicability of MCCMF are further verified by researching three specific diseases.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Tian-Ru Wu ◽  
Meng-Meng Yin ◽  
Cui-Na Jiao ◽  
Ying-Lian Gao ◽  
Xiang-Zhen Kong ◽  
...  

Abstract Background MicroRNAs (miRNAs) are non-coding RNAs with regulatory functions. Many studies have shown that miRNAs are closely associated with human diseases. Among the methods to explore the relationship between the miRNA and the disease, traditional methods are time-consuming and the accuracy needs to be improved. In view of the shortcoming of previous models, a method, collaborative matrix factorization based on matrix completion (MCCMF) is proposed to predict the unknown miRNA-disease associations. Results The complete matrix of the miRNA and the disease is obtained by matrix completion. Moreover, Gaussian Interaction Profile kernel is added to the miRNA functional similarity matrix and the disease semantic similarity matrix. Then the Weight K Nearest Known Neighbors method is used to pretreat the association matrix, so the model is close to the reality. Finally, collaborative matrix factorization method is applied to obtain the prediction results. Therefore, the MCCMF obtains a satisfactory result in the fivefold cross-validation, with an AUC of 0.9569 (0.0005). Conclusions The AUC value of MCCMF is higher than other advanced methods in the fivefold cross validation experiment. In order to comprehensively evaluate the performance of MCCMF, accuracy, precision, recall and f-measure are also added. The final experimental results demonstrate that MCCMF outperforms other methods in predicting miRNA-disease associations. In the end, the effectiveness and practicability of MCCMF are further verified by researching three specific diseases.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Zong-Lan Zuo ◽  
Rui-Fen Cao ◽  
Pi-Jing Wei ◽  
Jun-Feng Xia ◽  
Chun-Hou Zheng

Abstract Background Circular RNAs (circRNAs) are a class of single-stranded RNA molecules with a closed-loop structure. A growing body of research has shown that circRNAs are closely related to the development of diseases. Because biological experiments to verify circRNA-disease associations are time-consuming and wasteful of resources, it is necessary to propose a reliable computational method to predict the potential candidate circRNA-disease associations for biological experiments to make them more efficient. Results In this paper, we propose a double matrix completion method (DMCCDA) for predicting potential circRNA-disease associations. First, we constructed a similarity matrix of circRNA and disease according to circRNA sequence information and semantic disease information. We also built a Gauss interaction profile similarity matrix for circRNA and disease based on experimentally verified circRNA-disease associations. Then, the corresponding circRNA sequence similarity and semantic similarity of disease are used to update the association matrix from the perspective of circRNA and disease, respectively, by matrix multiplication. Finally, from the perspective of circRNA and disease, matrix completion is used to update the matrix block, which is formed by splicing the association matrix obtained in the previous step with the corresponding Gaussian similarity matrix. Compared with other approaches, the model of DMCCDA has a relatively good result in leave-one-out cross-validation and five-fold cross-validation. Additionally, the results of the case studies illustrate the effectiveness of the DMCCDA model. Conclusion The results show that our method works well for recommending the potential circRNAs for a disease for biological experiments.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Feng Zhou ◽  
Meng-Meng Yin ◽  
Cui-Na Jiao ◽  
Zhen Cui ◽  
Jing-Xiu Zhao ◽  
...  

Abstract Background With the rapid development of various advanced biotechnologies, researchers in related fields have realized that microRNAs (miRNAs) play critical roles in many serious human diseases. However, experimental identification of new miRNA–disease associations (MDAs) is expensive and time-consuming. Practitioners have shown growing interest in methods for predicting potential MDAs. In recent years, an increasing number of computational methods for predicting novel MDAs have been developed, making a huge contribution to the research of human diseases and saving considerable time. In this paper, we proposed an efficient computational method, named bipartite graph-based collaborative matrix factorization (BGCMF), which is highly advantageous for predicting novel MDAs. Results By combining two improved recommendation methods, a new model for predicting MDAs is generated. Based on the idea that some new miRNAs and diseases do not have any associations, we adopt the bipartite graph based on the collaborative matrix factorization method to complete the prediction. The BGCMF achieves a desirable result, with AUC of up to 0.9514 ± (0.0007) in the five-fold cross-validation experiments. Conclusions Five-fold cross-validation is used to evaluate the capabilities of our method. Simulation experiments are implemented to predict new MDAs. More importantly, the AUC value of our method is higher than those of some state-of-the-art methods. Finally, many associations between new miRNAs and new diseases are successfully predicted by performing simulation experiments, indicating that BGCMF is a useful method to predict more potential miRNAs with roles in various diseases.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaoyu Yang ◽  
Linai Kuang ◽  
Zhiping Chen ◽  
Lei Wang

Accumulating studies have shown that microbes are closely related to human diseases. In this paper, a novel method called MSBMFHMDA was designed to predict potential microbe–disease associations by adopting multi-similarities bilinear matrix factorization. In MSBMFHMDA, a microbe multiple similarities matrix was constructed first based on the Gaussian interaction profile kernel similarity and cosine similarity for microbes. Then, we use the Gaussian interaction profile kernel similarity, cosine similarity, and symptom similarity for diseases to compose the disease multiple similarities matrix. Finally, we integrate these two similarity matrices and the microbe-disease association matrix into our model to predict potential associations. The results indicate that our method can achieve reliable AUCs of 0.9186 and 0.9043 ± 0.0048 in the framework of leave-one-out cross validation (LOOCV) and fivefold cross validation, respectively. What is more, experimental results indicated that there are 10, 10, and 8 out of the top 10 related microbes for asthma, inflammatory bowel disease, and type 2 diabetes mellitus, respectively, which were confirmed by experiments and literatures. Therefore, our model has favorable performance in predicting potential microbe–disease associations.


2021 ◽  
Vol 22 (24) ◽  
pp. 13607
Author(s):  
Zhou Huang ◽  
Yu Han ◽  
Leibo Liu ◽  
Qinghua Cui ◽  
Yuan Zhou

MicroRNAs (miRNAs) are associated with various complex human diseases and some miRNAs can be directly involved in the mechanisms of disease. Identifying disease-causative miRNAs can provide novel insight in disease pathogenesis from a miRNA perspective and facilitate disease treatment. To date, various computational models have been developed to predict general miRNA–disease associations, but few models are available to further prioritize causal miRNA–disease associations from non-causal associations. Therefore, in this study, we constructed a Levenshtein-Distance-Enhanced miRNA–Disease Causal Association Predictor (LE-MDCAP), to predict potential causal miRNA–disease associations. Specifically, Levenshtein distance matrixes covering the sequence, expression and functional miRNA similarities were introduced to enhance the previous Gaussian interaction profile kernel-based similarity matrix. LE-MDCAP integrated miRNA similarity matrices, disease semantic similarity matrix and known causal miRNA–disease associations to make predictions. For regular causal vs. non-disease association discrimination task, LF-MDCAP achieved area under the receiver operating characteristic curve (AUROC) of 0.911 and 0.906 in 10-fold cross-validation and independent test, respectively. More importantly, LE-MDCAP prominently outperformed the previous MDCAP model in distinguishing causal versus non-causal miRNA–disease associations (AUROC 0.820 vs. 0.695). Case studies performed on diabetic retinopathy and hsa-mir-361 also validated the accuracy of our model. In summary, LE-MDCAP could be useful for screening causal miRNA–disease associations from general miRNA–disease associations.


Genes ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 608 ◽  
Author(s):  
Yan Li ◽  
Junyi Li ◽  
Naizheng Bian

Identifying associations between lncRNAs and diseases can help understand disease-related lncRNAs and facilitate disease diagnosis and treatment. The dual-network integrated logistic matrix factorization (DNILMF) model has been used for drug–target interaction prediction, and good results have been achieved. We firstly applied DNILMF to lncRNA–disease association prediction (DNILMF-LDA). We combined different similarity kernel matrices of lncRNAs and diseases by using nonlinear fusion to extract the most important information in fused matrices. Then, lncRNA–disease association networks and similarity networks were built simultaneously. Finally, the Gaussian process mutual information (GP-MI) algorithm of Bayesian optimization was adopted to optimize the model parameters. The 10-fold cross-validation result showed that the area under receiving operating characteristic (ROC) curve (AUC) value of DNILMF-LDA was 0.9202, and the area under precision-recall (PR) curve (AUPR) was 0.5610. Compared with LRLSLDA, SIMCLDA, BiwalkLDA, and TPGLDA, the AUC value of our method increased by 38.81%, 13.07%, 8.35%, and 6.75%, respectively. The AUPR value of our method increased by 52.66%, 40.05%, 37.01%, and 44.25%. These results indicate that DNILMF-LDA is an effective method for predicting the associations between lncRNAs and diseases.


Author(s):  
Mengyun Yang ◽  
Gaoyan Wu ◽  
Qichang Zhao ◽  
Yaohang Li ◽  
Jianxin Wang

Abstract With the development of high-throughput technology and the accumulation of biomedical data, the prior information of biological entity can be calculated from different aspects. Specifically, drug–drug similarities can be measured from target profiles, drug–drug interaction and side effects. Similarly, different methods and data sources to calculate disease ontology can result in multiple measures of pairwise disease similarities. Therefore, in computational drug repositioning, developing a dynamic method to optimize the fusion process of multiple similarities is a crucial and challenging task. In this study, we propose a multi-similarities bilinear matrix factorization (MSBMF) method to predict promising drug-associated indications for existing and novel drugs. Instead of fusing multiple similarities into a single similarity matrix, we concatenate these similarity matrices of drug and disease, respectively. Applying matrix factorization methods, we decompose the drug–disease association matrix into a drug-feature matrix and a disease-feature matrix. At the same time, using these feature matrices as basis, we extract effective latent features representing the drug and disease similarity matrices to infer missing drug–disease associations. Moreover, these two factored matrices are constrained by non-negative factorization to ensure that the completed drug–disease association matrix is biologically interpretable. In addition, we numerically solve the MSBMF model by an efficient alternating direction method of multipliers algorithm. The computational experiment results show that MSBMF obtains higher prediction accuracy than the state-of-the-art drug repositioning methods in cross-validation experiments. Case studies also demonstrate the effectiveness of our proposed method in practical applications. Availability: The data and code of MSBMF are freely available at https://github.com/BioinformaticsCSU/MSBMF. Corresponding author: Jianxin Wang, School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, P. R. China. E-mail: [email protected] Supplementary Data: Supplementary data are available online at https://academic.oup.com/bib.


Sign in / Sign up

Export Citation Format

Share Document