Shift compensation algorithm for servo-clutch based carpet tufting machine

Author(s):  
Guangfeng Chen ◽  
Qingqing Li ◽  
Zhilei Jin ◽  
Zhijun Sun ◽  
Yize Sun
2011 ◽  
Vol 179-180 ◽  
pp. 150-155 ◽  
Author(s):  
Guang Feng Chen ◽  
Wei Bin Wang ◽  
Hao Chun Sun ◽  
Qing Qing Li

The needle bar transverse shifting will likely form the stop mark liked gap on the tufted carpet. This paper proposed the yarn feeding compensation scheme and illustrate implement method in detail. Through analysis the change in yarn feeding path and loop pile forming of carpet tufting machine, construct the mathematical model of length change of yarn feeding in path and usage of loop pile forming while needle bar shifting. According to the mathematical model for yarn feeding compensation, calculate the additional yarn feeding requirement. Base on jacquard control principle, dynamic control the yarn feed actuator to drive the yarn feed roller to delivery additional length yarn, and produce loop pile with predefined pile height, Test result show the compensation is feasible.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4264
Author(s):  
Michal Gierczynski ◽  
Lech M. Grzesiak ◽  
Arkadiusz Kaszewski

This paper deals with a well-known problem of the transient DC-bias current occurring during a phase shift transition in dual active bridge (DAB) DC/DC converters. This phenomenon, if not compensated, can cause damage to the converter or deteriorate its performance. One aim of this paper is to present a solution which allows for the elimination of the undesired transient DC-bias component in current waveforms. This solution is the dual rising edge shift (DRES) compensation algorithm. It provides a very simple implementation and fast settling time within the first half of a switching period. Moreover, the solution is independent on any measurements or system parameter values. It is based on the double-sided single phase shift (DSSPS) modulation, which is described in detail along with a converter model in steady-state. Then, the mechanisms leading to the transient DC-bias are explained, and the compensation algorithm is derived. The performance of the algorithm has been tested using a laboratory prototype. A comprehensive set of tests, involving rapid step changes in power flow and frequency sweep, are provided. Finally, the features of the proposed algorithm are briefly discussed.


Sign in / Sign up

Export Citation Format

Share Document