Silicon-Polymer Electro-thermal bimorph actuators with SiC bottom-layer for large out-of-plane motion and improved power efficiency

Author(s):  
M. Aarts ◽  
J. Wei ◽  
P.M. Sarro
2003 ◽  
Vol 125 (5) ◽  
pp. 895-901 ◽  
Author(s):  
Michael G. Olsen ◽  
Chris J. Bourdon

In microscopic particle image velocimetry (microPIV) experiments, the entire volume of a flowfield is illuminated, resulting in all of the particles in the field of view contributing to the image. Unlike in light-sheet PIV, where the depth of the measurement volume is simply the thickness of the laser sheet, in microPIV, the measurement volume depth is a function of the image forming optics of the microscope. In a flowfield with out-of-plane motion, the measurement volume (called the depth of correlation) is also a function of the magnitude of the out-of-plane motion within the measurement volume. Equations are presented describing the depth of correlation and its dependence on out-of-plane motion. The consequences of this dependence and suggestions for limiting its significance are also presented. Another result of the out-of-plane motion is that the height of the PIV signal peak in the correlation plane will decrease. Because the height of the noise peaks will not be affected by the out-of-plane motion, this could lead to erroneous velocity measurements. An equation is introduced that describes the effect of the out-of-plane motion on the signal peak height, and its implications are discussed. Finally, the derived analytical equations are compared to results calculated using synthetic PIV images, and the agreement between the two is seen to be excellent.


1992 ◽  
Vol 96 (10) ◽  
pp. 7229-7236 ◽  
Author(s):  
Marek Z. Zgierski ◽  
Francesco Zerbetto ◽  
Young‐Dong Shin ◽  
Edward C. Lim

2013 ◽  
Vol 2013 ◽  
pp. 1-9
Author(s):  
Yasutomo Uetsuji ◽  
Hiroyuki Kuramae ◽  
Kazuyoshi Tsuchiya ◽  
Hidetoshi Sakamoto

A piezoelectric actuator was developed for fluid pumps in health monitoring systems. We devised a piezoelectric actuator with some slits, which allows the stretching and contracting deformation in in-plane direction and creates large deflection in out-of-plane direction. The static behaviors under uniform electric field have been analyzed by finite element method. And then, the optimum geometry of slits was searched by response surface methodology for unimorph and bimorph actuators to output the largest deflection under various fixed conditions. The computational results indicated that a bimorph actuator with cross-shaped slit under outside-fixed condition has superior performance for fluid pumps. The proposed slit-inserted actuators have been manufactured as an experiment. As a result, it was verified that the developed actuator can amplify the deflection compared with conventional nonslit actuators.


2017 ◽  
Vol 121 (26) ◽  
pp. 4939-4947
Author(s):  
Hongmei Xiao ◽  
Lishuang Ma ◽  
Weihai Fang ◽  
Xuebo Chen
Keyword(s):  

2001 ◽  
pp. 740-743 ◽  
Author(s):  
Hung-Yi Lin ◽  
Hsin-Hwa Hu ◽  
Weileun Fang ◽  
Ruey-Shing Huang
Keyword(s):  

2000 ◽  
Author(s):  
Hung-Yi Lin ◽  
Weileun Fang

Abstract In the present study, an out-of-plane motion actuator driven by the electrostatic force is designed and fabricated. The electrostatic force generated by the gap closing electrodes and the comb electrodes will be studied. Moreover, a lever motion transmitting mechanism is proposed to modulate the motion of the actuators. Although the space between the driving electrodes is limited, the lever motion transmitting mechanism could enlarge the traveling distance. The applications of the out-of-plane motion actuator are remarkably increased due to the assistant of the transmitting mechanism.


Sign in / Sign up

Export Citation Format

Share Document