plane direction
Recently Published Documents


TOTAL DOCUMENTS

219
(FIVE YEARS 54)

H-INDEX

15
(FIVE YEARS 4)

Author(s):  
Soroush Sepehri ◽  
Mahmoud Mosavi Mashhadi ◽  
Mir Masoud Seyyed Fakhrabadi

The effects of shear deformation on analysis of the wave propagation in periodic lattices are often assumed negligible. However, this assumption is not always true, especially for the lattices made of beams with smaller aspect ratios. Therefore, in the present paper, the effect of shear deformation on wave propagation in periodic lattices with different topologies is studied and their wave attenuation and directionality performances are compared. Current experimental limitations make the researchers focus more on the wave propagation in the direction perpendicular to the plane of periodicity in micro/nanoscale lattice materials while for their macro/mesoscale counterparts, in-plane modes can also be analyzed as well as the out-of-plane ones. Four well-known topologies of hexagonal, triangular, square, and Kagomé are considered in the current paper and their wave propagation is investigated both in the plane of periodicity and in the out-of-plane direction. The finite element method is used to formulate the governing equations and Bloch’s theorem is used to solve the dispersion relations. To investigate the effect of shear deformation, both the Timoshenko and Euler-Bernoulli beam theories are implemented. The results indicate that including shear deformation in wave propagation has a softening effect on the band diagrams of wave propagation and moves the dispersion branches to lower frequencies. It can also reveal some bandgaps that are not predicted without considering the shear deformation.


2021 ◽  
Vol 8 ◽  
Author(s):  
James N. Grima-Cornish ◽  
Daphne Attard ◽  
Kenneth E. Evans ◽  
Joseph N. Grima

Negative thermal expansion (NTE) materials and structures exhibit the anomalous property of shrinking rather than expanding when heated. This work examines the potential of multi-material planar re-entrant and non-re-entrant honeycombs to exhibit anomalous thermal expansion properties. Expressions for the coefficient of thermal expansion as a function of the geometric parameters and intrinsic thermal expansion properties were derived for any in-plane direction. It was shown that re-entrant honeycombs, a metamaterial which is well known for its auxetic characteristics, can be made to exhibit NTE in specific directions when constructed from conventional positive thermal expansion (PTE) materials, provided that the slanting ligaments expand more than the vertical ligaments when heated and that the geometry is amenable. Conversely, it was shown that the construction of such honeycombs from NTE components will not necessarily result in a system which exhibits NTE in all directions. Furthermore, conditions which result in honeycombs demonstrating zero thermal expansion (ZTE) coefficients in specific directions were also explored.


2021 ◽  
Vol 2101 (1) ◽  
pp. 012073
Author(s):  
Xueyao Hu ◽  
Jiaojiao Tang ◽  
Wei Xiao ◽  
Kepeng Qu

Abstract A progressive damage model was presented for carbon fiber woven composites under low velocity impact, considering the strain rate sensitivity of both mechanical properties and failure mechanisms. In this model, strain rate dependency of elastic modulus and nominal strength along in-plane direction are considered. Based on the Weibull distribution, stiffness progressive degradation is conducted by introducing strain rate dependent damage variables for distinct damage modes. With the model implemented in ABAQUS/Explicit via user-defined material subroutine (VUMAT), the mechanical behavior and possible damage modes of composites along in-plane direction can be determined. Furthermore, a bilinear traction separation model and a quadratic stress criterion are applied to predict the initiation and evolution of interlaminar delamination. Comparisons are made between the experimental results and numerical simulations. It is shown that the mechanical response and damage characteristics under low velocity impact, such as contact force history and delamination, are more consistent with the experimental results when taken the strain rate effect into consideration.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xinxin Xia ◽  
Tsz-Ki Lau ◽  
Xuyun Guo ◽  
Yuhao Li ◽  
Minchao Qin ◽  
...  

AbstractThe bulk morphology of the active layer of organic solar cells (OSCs) is known to be crucial to the device performance. The thin film device structure breaks the symmetry into the in-plane direction and out-of-plane direction with respect to the substrate, leading to an intrinsic anisotropy in the bulk morphology. However, the characterization of out-of-plane nanomorphology within the active layer remains a grand challenge. Here, we utilized an X-ray scattering technique, Grazing-incident Transmission Small-angle X-ray Scattering (GTSAXS), to uncover this new morphology dimension. This technique was implemented on the model systems based on fullerene derivative (P3HT:PC71BM) and non-fullerene systems (PBDBT:ITIC, PM6:Y6), which demonstrated the successful extraction of the quantitative out-of-plane acceptor domain size of OSC systems. The detected in-plane and out-of-plane domain sizes show strong correlations with the device performance, particularly in terms of exciton dissociation and charge transfer. With the help of GTSAXS, one could obtain a more fundamental perception about the three-dimensional nanomorphology and new angles for morphology control strategies towards highly efficient photovoltaic devices.


Author(s):  
Xiaoling Luo ◽  
Guanda Yang ◽  
Dirk W. Schubert

AbstractPristine carbon nanotubes (CNTs) and functionalized carbon nanotubes (f-CNTs) were introduced into conductive poly(methyl methacrylate)/graphene nanoplatelet (PMMA/GNP) composites to achieve a synergistic effect in the enhancement of the conductivity and the reduction in the percolation threshold by forming a 3-Dimensional(3-D) hybrid structure. Both the in-plane and perpendicular electrical properties were investigated. The synergies of hybrid fillers in the in-plane direction were more dependent on the total filler loading, while those in the perpendicular direction were significantly influenced by the GNP/CNT or GNP/f-CNT ratios. Typically, a schematic diagram of the evolution of the 3-D conductive pathways of PMMA/GNP/f-CNT composite at different GNP/f-CNT ratios was presented to explain this phenomenon. Moreover, tunable conductivity anisotropy (defined as the ratio of in-plane conductivity to perpendicular conductivity) ranging from 0.01 to 1000 was achieved, simply by constructing different conductive structures at various filler loadings or ratios in composites. Graphical abstract The synergistic effect of GNPs and f-CNTs varies with the microstructural conductive network evolution at different filler ratios.


Nature ◽  
2021 ◽  
Vol 597 (7878) ◽  
pp. 660-665
Author(s):  
Shi En Kim ◽  
Fauzia Mujid ◽  
Akash Rai ◽  
Fredrik Eriksson ◽  
Joonki Suh ◽  
...  

AbstractThe densification of integrated circuits requires thermal management strategies and high thermal conductivity materials1–3. Recent innovations include the development of materials with thermal conduction anisotropy, which can remove hotspots along the fast-axis direction and provide thermal insulation along the slow axis4,5. However, most artificially engineered thermal conductors have anisotropy ratios much smaller than those seen in naturally anisotropic materials. Here we report extremely anisotropic thermal conductors based on large-area van der Waals thin films with random interlayer rotations, which produce a room-temperature thermal anisotropy ratio close to 900 in MoS2, one of the highest ever reported. This is enabled by the interlayer rotations that impede the through-plane thermal transport, while the long-range intralayer crystallinity maintains high in-plane thermal conductivity. We measure ultralow thermal conductivities in the through-plane direction for MoS2 (57 ± 3 mW m−1 K−1) and WS2 (41 ± 3 mW m−1 K−1) films, and we quantitatively explain these values using molecular dynamics simulations that reveal one-dimensional glass-like thermal transport. Conversely, the in-plane thermal conductivity in these MoS2 films is close to the single-crystal value. Covering nanofabricated gold electrodes with our anisotropic films prevents overheating of the electrodes and blocks heat from reaching the device surface. Our work establishes interlayer rotation in crystalline layered materials as a new degree of freedom for engineering-directed heat transport in solid-state systems.


2021 ◽  
Vol 6 (1) ◽  
pp. 27-30
Author(s):  
Noor Sharina Azrin Zakari ◽  
Julie Juliewatty Mohamed ◽  
Nurul Basyirah Aryani Abdul Rahman ◽  
Slina Anjang Ab Rahman ◽  
Zairul Amin Rabidin

Utilization of sandwich composite during recent year has been driven by the fact that compositematerial has ultimately high strength and stiffness by weight than any other materials. The skins ofsandwich composites technically bear most of the applied loads, however, the core materials alsoplay an important role as it functions in providing continuous support to resist the shear stress.Hence, proper selection of core materials is required to establish a sturdy sandwich compositestructure. This paper presents an experimental investigation on the sandwich structure consists offibreglass/epoxy face skins and a mahang wood core. Sandwich composite with core grain orientedin parallel and perpendicular to the flat plane direction were tested for mechanical performance intension, compression and flexure. The results indicate that sandwich composite with grain orientedin parallel direction performed better in tensile properties with strength of 201.98 MPa whereassandwich composite with perpendicular core grain produced a higher value of compressionproperties with strength of 70.11 MPa. However, no significant effect of grain orientation wasobserved in flexural strength. The strength of sandwich composite is dependent on the grainalignment of the wood core as it functions exclusively as mechanical supporting cells to supportthe wood structure.


Sign in / Sign up

Export Citation Format

Share Document