fixed condition
Recently Published Documents


TOTAL DOCUMENTS

58
(FIVE YEARS 21)

H-INDEX

7
(FIVE YEARS 1)

Author(s):  
Pawan Lapborisuth ◽  
Sharath Koorathota ◽  
Qi Wang ◽  
Paul Sajda

Abstract Objective. Reorienting is central to how humans direct attention to different stimuli in their environment. Previous studies typically employ well-controlled paradigms with limited eye and head movements to study the neural and physiological processes underlying attention reorienting. Here, we aim to better understand the relationship between gaze and attention reorienting using a naturalistic virtual reality (VR)-based target detection paradigm. Approach. Subjects were navigated through a city and instructed to count the number of targets that appeared on the street. Subjects performed the task in a fixed condition with no head movement and in a free condition where head movements were allowed. Electroencephalography (EEG), gaze and pupil data were collected. To investigate how neural and physiological reorienting signals are distributed across different gaze events, we used hierarchical discriminant component analysis (HDCA) to identify EEG and pupil-based discriminating components. Mixedeffects general linear models (GLM) were used to determine the correlation between these discriminating components and the different gaze events time. HDCA was also used to combine EEG, pupil and dwell time signals to classify reorienting events. Main results. In both EEG and pupil, dwell time contributes most significantly to the reorienting signals. However, when dwell times were orthogonalized against other gaze events, the distributions of the reorienting signals were different across the two modalities, with EEG reorienting signals leading that of the pupil reorienting signals. We also found that the hybrid classifier that integrates EEG, pupil and dwell time features detects the reorienting signals in both the fixed (AUC = 0.79) and the free (AUC = 0.77) condition. Significance. We show that the neural and ocular reorienting signals are distributed differently across gaze events when a subject is immersed in VR, but nevertheless can be captured and integrated to classify target vs. distractor objects to which the human subject orients.


2021 ◽  
Vol 3 (1) ◽  
pp. 1-30
Author(s):  
Omotade Adegbindin

As an exercise in African philosophy, this paper examines and demonstrates the limitations of the two popular extremes in disability studies, namely, the medical and social models of disability. While the former is essentialist in rendering disability as a fixed condition and as an individual problem to be confronted with medical intervention, the latter identifies it as a social problem that requires social intervention. The paper employs the methods of hermeneutics, critical and conceptual analyses to facilitate an understanding that, within the context of Yorùbá belief, disability goes beyond the realm of human beings and involves the active participation of Yorùbá deities, especially Òrìṣà-ńlá or Ọbàtálá. Consequently, it questions the assumptions associated with the recognition of the dichotomy between “normality” and “abnormality” and confronts the mystical and/or mythographic representation of ẹni-òòṣà or persons with disabilities with a view to offering new insights into how persons with disabilities ought to be conceptualized in order to promote their inherent human dignity.


2021 ◽  
Vol 28 (12) ◽  
pp. 440-444
Author(s):  
Zhuolei Ding ◽  
Ting Jiang ◽  
Chuansheng Chen ◽  
Vishnu P. Murty ◽  
Jingming Xue ◽  
...  

Recent studies have revealed that memory performance is better when participants have the opportunity to make a choice regarding the experimental task (choice condition) than when they do not have such a choice (fixed condition). These studies, however, used intentional memory tasks, leaving open the question whether the choice effect also applies to incidental memory. In the current study, we first repeated the choice effect on the 24-h delayed intentional memory performance (experiment 1). Next, using an incidental paradigm in which participants were asked to judge the category of the items instead of intentionally memorizing them, we observed the choice effect on judgment during encoding and memory performance in a 24-h delayed surprise test (experiment 2). Participants judged more accurately and quickly and had better recognition memory for items in the choice condition than for items in the fixed condition. These results are discussed in terms of the role of choice in both intentional and incidental memory.


Author(s):  
Sara Honarvar ◽  
Mia Caminita ◽  
Hossein Ehsani ◽  
Hyun Joon Kwon ◽  
Yancy Diaz-Mercado ◽  
...  

We investigated the role of task constraints on inter-personal interactions. Twenty-one pairs of co-workers performed a finger force production task on force sensors placed at two ends of a seesaw-like apparatus and matched a combined target force of 20N for 23 seconds over ten trials. There were two experimental conditions: 1) FIXED: the seesaw apparatus was mechanically held in place so that the only task constraint was to match the 20N resultant force, and 2) MOVING: the lever in the apparatus was allowed to rotate freely around its fulcrum, acting like a seesaw, so an additional task constraint to (implicitly) balance the resultant moment was added. We hypothesized that the additional task constraint of moment stabilization imposed on the MOVING condition would deteriorate task performance compared to the FIXED condition; however, this was rejected as the performance of the force matching task was similar between two conditions. We also hypothesized that the central nervous systems (CNSs) would employ distinct co-working strategies or inter-personal motor synergy (IPMS) between conditions to satisfy different task constraints, which was supported by our results. Negative covariance between co-worker's forces in the FIXED condition suggested a force stabilization strategy, while positive covariance in the MOVING condition suggested a moment stabilization strategy, implying that independent CNSs adopt distinct IPMSs depending on task constraints. We speculate that, in the absence of a central neural controller, shared visual and mechanical connections between co-workers may suffice to trigger modulations in the cerebellum of each CNS to satisfy competing task constraints.


Author(s):  
Keisuke Tsunoda ◽  
Akinori Y. Sato ◽  
Ryo Mizuyama ◽  
Satoshi Shimegi

Abstract Rationale Noradrenaline (NA) is a neuromodulator secreted from noradrenergic neurons in the locus coeruleus to the whole brain depending on the physiological state and behavioral context. It regulates various brain functions including vision via three major adrenergic receptor (AR) subtypes. Previous studies investigating the noradrenergic modulations on vision reported different effects, including improvement and impairment of perceptual visual sensitivity in rodents via β-AR, an AR subtype. Therefore, it remains unknown how NA affects perceptual visual sensitivity via β-AR and what neuronal mechanisms underlie it. Objectives The current study investigated the noradrenergic modulation of perceptual and neuronal visual sensitivity via β-AR in the primary visual cortex (V1). Methods We performed extracellular multi-point recordings from V1 of rats performing a go/no-go visual detection task under the head-fixed condition. A β-AR blocker, propranolol (10 mM), was topically administered onto the V1 surface, and the drug effect on behavioral and neuronal activities was quantified by comparing pre-and post-drug administration. Results The topical administration of propranolol onto the V1 surface significantly improved the task performance. An analysis of the multi-unit activity in V1 showed that propranolol significantly suppressed spontaneous activity and facilitated the visual response of the recording sites in V1. We further calculated the signal-to-noise ratio (SNR), finding that the SNR was significantly improved after propranolol administration. Conclusions Pharmacological blockade of β-AR in V1 improves perceptual visual detectability by modifying the SNR of neuronal activity.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0253015
Author(s):  
Savvas Stafilidis ◽  
Carina Kopper-Zisser

We examined the effect of ankle joint fixation vs increased foot pressure (aiming to reduce dynamometer-subject elasticity (DSE)) on the exerted moment during plantarflexion contraction. We also examined the joint rotation in dependence of the measuring site (forefoot, rearfoot) and the foot condition (fixed, free). We hypothesized higher exerted moments due to reduced DSE compared to fixed condition and an effect of fixation on the joint rotation in dependence of the measuring site. Fourteen healthy individuals (28.7±6.9y) completed in randomized order maximal isometric plantarflexions in four different positions (0-3-6-9 cm) and two ankle joint conditions (fixed-free). Kinematics of the rear- and forefoot were obtained synchronously. We found higher moment in the fixed compared to the free condition at all positions. The maximum moment in the fixed condition did not differ at any position. At the fixed condition, the forefoot rotation did not differ at any position (~5°) while at free condition we observed a significant rotation reduction (form ~12 to ~5°). The rearfoot rotation did not differ between conditions at any position while a significant joint angle reduction was observed (~10 to ~6° and ~12 to ~6°; fixed-free respectively). The results indicate that with appropriate foot fixation the maximum moment can be achieved irrespective of the position. With the foot secured, the measuring site influences the rotational outcome. We suggest that for a minimization of the joint rotation a fixation and the forefoot-measuring site should be preferred. Additionally, for unconstrained foot kinematic observations both measuring sites can be obtained.


2021 ◽  
Vol 269 ◽  
pp. 01002
Author(s):  
Li Wang ◽  
Jiafeng Fu ◽  
Wenlei Wang ◽  
Yutong Song ◽  
Yan Li

This work explores the effect of the ammonia concentration on the wetland synthesis of microbial fuel cell (MFC) and on the production and the efficiency of sewage purification. Four ammonia concentrations from 1 to 30 mg/L have been selected. Under the fixed condition of a chemical oxygen demand (COD) concentration of 200 mg/L, a constructed wetland microbial fuel cell (CW-MFC) could be built. The results show that by selecting the optimum ammonia concentration the production of the CW-MFC could be promoted; a higher ammonia concentration (>20 mg/L) is found to inhibit the production activity of CW-MFC. In the optimum conditions, Cathode and anode thickness is 10 cm, the ammonia concentration is 10 mg/L, the COD concentration of 200 mg/L, the maximum power density of the battery is 13.6 W/m3, the corresponding current density is 148.6 A/m3 and the battery internal resistance is 270 Ω. At the ammonia nitrogen concentration of 10 mg/L, the removal rates of ammonia nitrogen and COD were up to 89.7% and 98.47% respectively. As the ammonia nitrogen concentration increased to 30 mg/L, the ammonia nitrogen and COD removal rates decreased to 74.6% and 90.69% respectively. That is, when the ammonia nitrogen concentration is 10 mg/L, CW-MFC can exhibit the best performance.


2021 ◽  
Vol 7 (2) ◽  
pp. 30-64
Author(s):  
Ann Cvetkovich

Focusing in particular on how affect theory has been informed by art practice, this article develops the concept of the “sovereignty of the senses” through queer and feminist installation projects by Rachael Shannon and Zoe Leonard, as well as Alison Bechdel’s account of retreat from the social in her graphic narrative memoir Are You My Mother? (2012). Aiming to articulate notions of sovereignty, democracy, and freedom in affective and sensory terms, it conceives of sovereignty as an embodied practice and something that must be learned and experienced collectively over time rather than a fixed condition of a discrete individual or nation. It explores tensions between Indigenous notions of sovereignty and queer notions of the antisocial or non-sovereign, as well as recent discussions of the commons as an affective category, to offer an anti-racist and decolonial account of queer feminist affect theory and cultural politics.


2020 ◽  
Vol 3 (4) ◽  
pp. 229-243
Author(s):  
Mohd Firoj ◽  
Sauhardra Ojha ◽  
Prince Poddar ◽  
Sanjeew Kumar Singh

The present paper focuses on the nonlinear static pushover analysis of a 3-span existing RC bridge located in Indian seismic Zone IV as per IS1893-2016 using the Finite Element Method (FEM). The 3D model of the RC bridge is simulated using the FEM technique and pushover analysis is performed to analyze the structure for modal mass participating ratio, performance level, spectral demand, and capacity of the structure. The bridge pier and longitudinal girder are modeled using the two noded beam element and bent cap and abutment of the bridge structure is modeled using the 8 noded brick element. The base of the column is assumed fixed condition. The pushover analysis is performed using Displacement Modification (FEMA 440) and Capacity Spectrum Method (ATC 40). The outcomes of results appear that the considered bridge has inadequate capacity to cope up with any of the desired performance levels because spectral demand is greater than the spectral capacity. The modal analysis of the 3D bridge exposes that it has many closely-spaced modes. The mass participating ratio for the higher modes is not very high. After performing pushover analysis of the exiting RC bridge structure it has been concluded that the existing bridge structure does not meet seismic criteria of spectral demand as per the ATC 40 and FEMA 440, therefore retrofitting is required for bridge component i.e. piers, abutment, and bent cap.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9962
Author(s):  
Banuvathy Rajakumar ◽  
Varadhan SKM

Background The human hand plays a crucial role in accomplishing activities of daily living. The contribution of each finger in the human hand is remarkably unique in establishing object stabilization. According to the mechanical advantage hypothesis, the little finger tends to exert a greater normal force than the ring finger during a supination moment production task to stabilize the object. Similarly, during pronation, the index finger produces more normal force when compared with the middle finger. Hence, the central nervous system employs the peripheral fingers for torque generation to establish the equilibrium as they have a mechanical advantage of longer moment arms for normal force. In our study, we tested whether the mechanical advantage hypothesis is supported in a task in which the contribution of thumb was artificially reduced. We also computed the safety margin of the individual fingers and thumb. Methodology Fifteen participants used five-finger prismatic precision grip to hold a custom-built handle with a vertical railing on the thumb side. A slider platform was placed on the railing such that the thumb sensor could move either up or down. There were two experimental conditions. In the “Fixed” condition, the slider was mechanically fixed, and hence the thumb sensor could not move. In the “Free” condition, the slider platform on which the thumb sensor was placed could freely move. In both conditions, the instruction was to grasp and hold the handle (and the platform) in static equilibrium. We recorded tangential and normal forces of all the fingers. Results The distribution of fingertip forces and moments changed depending on whether the thumb platform was movable (or not). In the free condition, the drop in the tangential force of thumb was counteracted by an increase in the normal force of the ring and little finger. Critically, the normal forces of the ring and little finger were statistically equivalent. The safety margin of the index and middle finger did not show a significant drop in the free condition when compared to fixed condition. Conclusion We conclude that our results does not support the mechanical advantage hypothesis at least for the specific mechanical task considered in our study. In the free condition, the normal force of little finger was comparable to the normal force of the ring finger. Also, the safety margin of the thumb and ring finger increased to prevent slipping of the thumb platform and to maintain the handle in static equilibrium during the free condition. However, the rise in the safety margin of the ring finger was not compensated by a drop in the safety margin of the index and middle finger.


Sign in / Sign up

Export Citation Format

Share Document