comb drive
Recently Published Documents


TOTAL DOCUMENTS

413
(FIVE YEARS 40)

H-INDEX

26
(FIVE YEARS 2)

Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7462
Author(s):  
Mariusz Jankowski ◽  
Piotr Zając ◽  
Piotr Amrozik ◽  
Michał Szermer ◽  
Cezary Maj ◽  
...  

In this work, we analysed the difference between the measurement and simulation results of thermal drift of a custom designed capacitive MEMS accelerometer. It was manufactured in X-FAB XMB10 technology together with a dedicated readout circuit in X-FAB XP018 technology. It turned out that the temperature sensitivity of the sensor’s output is nonlinear and particularly strong in the negative Celsius temperature range. It was found that the temperature drift is mainly caused by the MEMS sensor and the influence of the readout circuit is minimal. Moreover, the measurements showed that this temperature dependence is the same regardless of applied acceleration. Simulation of the accelerometer’s model allowed us to estimate the contribution of post-manufacturing mismatch on the thermal drift; for our sensor, the mismatch-induced drift accounted for about 6% of total thermal drift. It is argued that the remaining 94% of the drift could be a result of the presence of residual stress in the structure after fabrication.


Mechatronics ◽  
2021 ◽  
Vol 78 ◽  
pp. 102631
Author(s):  
David Brunner ◽  
Stephan Albert ◽  
Marcus Hennecke ◽  
Franz Darrer ◽  
Georg Schitter

2021 ◽  
Author(s):  
Alexey V. Lukin ◽  
Dmitry Indeitsev ◽  
Ivan Popov ◽  
Nadezhda Mozhgova

Abstract This paper provides an extensive study of the nonlinear dynamics of a variable gap electrostatic comb-drive. The amplitude- and phase-frequency response, as well as the amplitude- and phase-force response of the comb-drive were obtained and analyzed with and without taking into account the cubic nonlinearity of the suspension. A significant variation in the frequency and force response is demonstrated in the presence of nonlinearity of the elastic suspension. Using numerical methods of bifurcation theory, solutions are obtained that correspond to the resonance peak of the frequency response when the constant and variable components of the voltages change. The result obtained makes it possible to determine the range of excitation voltage values that provide the required vibration amplitude in the resonant mode. The influence of the second stationary electrode on the dynamics of the system is estimated. The significant influence of this factor on the resonant-mode characteristics is revealed.


2021 ◽  
Author(s):  
Zewdu Hailu

Current tunable devices such as filters, impedance matching networks and oscillators have problems that degrade their performance at high microwave frequencies. Tuning ratios and quality factors are the major problems associated with semiconductor based tuning components. This thesis presents the design, fabrication and testing of two novel RF MEMS tunable capacitors. The first tunable capacitor is designed using electrostatic repulsive-force actuators which produce an upward movement of the moving plate of a tunable capacitor. The repulsive-force actuator is free of pull-in effect and capable of reaching large displacement. Gap increasing tunable capacitors with areas of 162μm×220μm and 300μm×302μm are developed using electrostatic repulsive-force actuators. The capacitances are calculated using simulations and maximum tuning ratios of 438.5% and 230% are obtained for a parallel and inclined plate designs, respectively, with capacitance-voltage linearity of 96.28% and 95.14%, respectively, in the presence of RF voltage. The second tunable capacitor is developed using residual stress gradient based vertical comb-drive actuator. Conventional vertical comb-drive actuators need two vertical comb fingers, i.e., one for the fixed and one for the moving comb. MetalMUMPs process provides a 20μm thick nickel layer which is subject to residual stress gradient along its thickness. Using the residual stress gradient two curve-up beams are devised to bend out of plane and upward. A moving plate is connected between the middles of the curve-up beams through supporting springs and is raised above the substrate. The moving fingers are connected to opposite sides of the moving plate. The fixed comb-drive fingers are anchored to the substrate. When a voltage is applied, the moving fingers move down towards the fixed fingers. As a result, the capacitance between the moving fingers and the fixed fingers change. Prototypes are fabricated to verify the working principles of this novel actuator using the MetalMUMPs process. Tunable capacitors based on this actuator are experimentally analyzed. Quality factors of 106.9-162.7 at 0.8GHz and 42.4-51.9 at 1.24GHz are obtained over actuation voltage of 0-100V. An optimal design of the tunable capacitors achieved a tuning ratio of 194.4% at 162.5V with linearity of 97.84%


2021 ◽  
Author(s):  
Zewdu Hailu

Current tunable devices such as filters, impedance matching networks and oscillators have problems that degrade their performance at high microwave frequencies. Tuning ratios and quality factors are the major problems associated with semiconductor based tuning components. This thesis presents the design, fabrication and testing of two novel RF MEMS tunable capacitors. The first tunable capacitor is designed using electrostatic repulsive-force actuators which produce an upward movement of the moving plate of a tunable capacitor. The repulsive-force actuator is free of pull-in effect and capable of reaching large displacement. Gap increasing tunable capacitors with areas of 162μm×220μm and 300μm×302μm are developed using electrostatic repulsive-force actuators. The capacitances are calculated using simulations and maximum tuning ratios of 438.5% and 230% are obtained for a parallel and inclined plate designs, respectively, with capacitance-voltage linearity of 96.28% and 95.14%, respectively, in the presence of RF voltage. The second tunable capacitor is developed using residual stress gradient based vertical comb-drive actuator. Conventional vertical comb-drive actuators need two vertical comb fingers, i.e., one for the fixed and one for the moving comb. MetalMUMPs process provides a 20μm thick nickel layer which is subject to residual stress gradient along its thickness. Using the residual stress gradient two curve-up beams are devised to bend out of plane and upward. A moving plate is connected between the middles of the curve-up beams through supporting springs and is raised above the substrate. The moving fingers are connected to opposite sides of the moving plate. The fixed comb-drive fingers are anchored to the substrate. When a voltage is applied, the moving fingers move down towards the fixed fingers. As a result, the capacitance between the moving fingers and the fixed fingers change. Prototypes are fabricated to verify the working principles of this novel actuator using the MetalMUMPs process. Tunable capacitors based on this actuator are experimentally analyzed. Quality factors of 106.9-162.7 at 0.8GHz and 42.4-51.9 at 1.24GHz are obtained over actuation voltage of 0-100V. An optimal design of the tunable capacitors achieved a tuning ratio of 194.4% at 162.5V with linearity of 97.84%


Sign in / Sign up

Export Citation Format

Share Document