Control of Real Power Flow in the Transmission Line Using PWM Based Voltage Source Inverter

Author(s):  
P. Shaikshavali Swamy ◽  
N. Janarthanan ◽  
S. Balamurugan
Author(s):  
SURYA PRAKASH ◽  
KAMTA PRASAD VERMA ◽  
BRIJESH SINGH

This electronic document is a “live” template. The various In present a new Static Synchronous Series Compensator (SSSC) for the control of active power flow on a transmission line is proposed and its effectiveness is investigated. The new SSSC is based on injecting a voltage in a given line to counter or augment the voltage &Power produced by the inductive reactance of the line. The resulting compensator, therefore, emulates the control of transmission line reactance and thus, it assists in control by the power transmission capacity. The voltage to be injected in a line is produced by a Binary Voltage Source Inverter (BVSI). BVSI is an attractive recently proposed Voltage Source Inverter. Its output contains very little harmonics and it utilizes very few dc sources unlike conventional multi-level VSIs. The % phase output of the BVSI is synchronized to the line frequency and its phase is arranged to be in or out of phase with the Line reactance drop. The proposed BVSI-SSSC is realized by using three binary proportioned dc sources, which may be appropriately dimensioned capacitors. The resulting output of a BVSI-SSSC is a 15-step ac voltage waveform. The BVSISSSC has a sophisticated set of coordinated controlled which ensure: BVSI frequency is in synchronism with the system frequency, firing pulses are regulated for inverter valves to ensure minimum harmonic content, the selection of Modulation Index and arrangement regulates an appropriate phase relationship to create the desired change in the power flow, and adjustment of firing angles to ensure that the capacitors creating dc binary proportioned sources maintain desired charge on them. Armillary controls may be added to create positive system damping through active power control, and voltage dependent controllers may be added to limit over and under voltage (charging) of capacitors during fault conditions.


Author(s):  
Diogo Marinho ◽  
Miguel Chaves ◽  
Paulo Gambôa ◽  
José Lopes

Abstract The increasing use of electrical vehicles aroused the problem of batteries charging and the consequent interface with the power grid. Commercial charging solutions are mostly based on unidirectional power flow converters; however, bidirectional power flow converters are an interesting solution when considering smart microgrid applications, with benefits in efficient energy use. In this context, the paper presents a bidirectional power flow converter for grid-to-vehicle (G2V) or vehicle-to-grid (V2G) applications. The conversion system is based on a three-phase voltage source inverter (VSI), which assures the grid connection with a unitary power factor. The direct current (DC) bus of the voltage source inverter is connected to a DC/DC converter that controls the battery power flow. This conversion system can operate in G2V mode when charging the battery or in V2G mode when working as an energy storage system and the power flow is from the battery to the power grid. The conversion system model is presented as well as the control strategy proposed. Simulation and experimental results showing voltages and currents in the circuit are also presented.


2017 ◽  
Vol 7 (3) ◽  
pp. 1588-1594
Author(s):  
Μ. Μ. Alomari ◽  
M. S. Widyan ◽  
M. Abdul-Niby ◽  
A. Gheitasi

The use of a unified power flow controller (UPFC) to control the bifurcations of a subsynchronous resonance (SSR) in a multi-machine power system is introduced in this study. UPFC is one of the flexible AC transmission systems (FACTS) where a voltage source converter (VSC) is used based on gate-turn-off (GTO) thyristor valve technology. Furthermore, UPFC can be used as a stabilizer by means of a power system stabilizer (PSS). The considered system is a modified version of the second system of the IEEE second benchmark model of subsynchronous resonance where the UPFC is added to its transmission line. The dynamic effects of the machine components on SSR are considered. Time domain simulations based on the complete nonlinear dynamical mathematical model are used for numerical simulations. The results in case of including UPFC are compared to the case where the transmission line is conventionally compensated (without UPFC) where two Hopf bifurcations are predicted with unstable operating point at wide range of compensation levels. For UPFC systems, it is worth to mention that the operating point of the system never loses stability at all realistic compensation degrees and therefore all power system bifurcations have been eliminated.


Author(s):  
B. SOUJANYA YADAV ◽  
L. RAMADEVI ◽  
DR. P. S. R. MURTHY

In this paper shunt active power filter is used to improve the power quality at distribution system. Due to nonlinear loads, current harmonics, unbalanced voltages and current and reactive power problems will be created in the network. The Instantaneous real power theory (IRPT) provides the real power calculation with PI controller will not provide accurate result and good performance under both steady state and transient state. Compensating above problems by using fuzzy based on Cascaded multi-level voltage source inverter. The inverter switching signals are generated based on the triangular sampling current controller provides power line conditioning. The Paper deals with three phase, five level cascaded multi level voltage source inverter based shunt active filter with PI and Fuzzy controller by using MATLAB/Simulink.


Author(s):  
Ferdian Ronilaya ◽  
Mahrus Hapidi ◽  
Sapto Wibowo ◽  
Ratna Ika Putri ◽  
Afifah Zuhroh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document