Design and Performance Evaluation of a Multiuser OFDM System Based on Differential Quadrature Chaos-Shift-Keying Spread Spectrum

Author(s):  
Ashraf Y. Hassan ◽  
Mahmoud O. El Beshry ◽  
Khaled T. Harb ◽  
H. El Hennawy
2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Gang Zhang ◽  
Yi man Hao ◽  
Tian qi Zhang

The major drawback of the differential chaos shift keying (DCSK) system is that equal time and energy are spent on the reference and data signal. This paper presents the design and performance analysis of a short reference multifold rate DCSK (SRMR-DCSK) system to overcome the major drawback. The SRMR-DCSK system is proposed to enhance the data rate of the short reference differential chaos shift keying (SR-DCSK) system. By recycling each reference signal in SR-DCSK, the data slot carries N bits of data and by P times. As a result, compared with SR-DCSK, the proposed system has a higher data transmission rate and evaluates the energy efficiency with respect to the conventional DCSK system. To further improve the bit-error-rate (BER) performance over Rayleigh fading channels, the multiple-input single-output SRMR-DCSK (MISO-SRMR-DCSK) is also studied. The BER expression of the proposed system is derived based on Gaussian approximation (GA), and simulations in Rayleigh fading channels are performed. Simulation results show a perfect match with the analytical expression.


2020 ◽  
Vol 24 (06) ◽  
pp. 42-56
Author(s):  
Hayder F. Fahad ◽  
◽  
Fadhil S. Hassan ◽  

Based on Orthogonal Chaotic Vector Shift Keying (OCVSK) system and Multilevel Code-Shifted Differential Chaos Shift Keying (MCS-DCSK) system, a new Multilevel Code-Shifted Differential Chaos Shift Keying (OMCS-DCSK) modulation system is proposed and designed in this paper. New orthogonal chaotic signal sets are generated using Gram-Schmidt algorithm and Walsh code function then these signals are used for bearing information bits to achieve higher data rate and better bandwidth efficiency compared with the conventional DCSK communication system. The bit error rate (BER) analysis of the OMCS-DCSK system over additive white Gaussian noise (AWGN) and multipath Rayleigh fading channel is derived and compared with the simulation results. Also, the spectral and complexity analysis of the system are presented and compared with the conventional DCSK systems. The results show that the proposed system outperforms OCVSK and MCS-DCSK in BER performance and spectral efficiency


Sign in / Sign up

Export Citation Format

Share Document