High-pressure xenon gas TPC for neutrino-less double-beta decay in 136Xe: Progress toward the goal of 1% FWHM energy resolution

Author(s):  
Azriel Goldschmidt ◽  
Tom Miller ◽  
David Nygren ◽  
Joshua Renner ◽  
Derek Shuman ◽  
...  
2021 ◽  
Vol 2105 (1) ◽  
pp. 012016
Author(s):  
Ioannis Katsioulas

Abstract The nature of the neutrino is a central questions in physics. The search for neutrinoless double beta decay is the most sensitive experimental approach to demonstrate that the neutrino is a Majorana particle. Observation of such a rare process demands a detector with an excellent energy resolution, extremely low background, and a large mass of a double beta decaying isotope. R2D2 aims to develop a novel spherical high-pressure TPC that meets all the above requirements. As a first step, the energy resolution of the R2D2 prototype was measured. A 1.1% (FWHM) energy resolution was achieved for 5.3 MeV α-particles in Ar:CH4 at pressure up to 1.1 bar. This is a major milestone for R2D2 and paves the way for further studies with Xe gas and the possible use of this technology for neutrinoless double beta decay searches.


2018 ◽  
Vol 46 ◽  
pp. 1860039
Author(s):  
P. Novella

The goal of the NEXT collaboration is the sensitive search of the neutrino-less double beta decay ([Formula: see text]) of [Formula: see text]Xe at the LSC. After a successful R&D phase, a first large-scale prototype of a high-pressure gas-Xenon electroluminescent TPC (NEW) is being operated at LSC since 2016. NEW is a 10-kg radiopure detector meant to understand the relevant backgrounds for the [Formula: see text]search and to perform a measurement of the two neutrino mode of the double beta decay ([Formula: see text]). The first phase of the NEW physics program comprises the commissioning of the detector and the data taking with calibration sources. This phase has allowed to understand the detector capabilities in terms of energy resolution and event topology reconstruction. The operation of NEW is setting the grounds for the construction of the NEXT-100 detector: a TPC holding 100 kg of [Formula: see text]Xe and reaching a sensitivity to the [Formula: see text]half-life of [Formula: see text] y after 3 years of data taking. The latest results of the NEW detector as well as the status of the NEXT-100 project are presented.


2020 ◽  
Vol 2020 (3) ◽  
Author(s):  
S Ban ◽  
M Hirose ◽  
A K Ichikawa ◽  
Y Iwashita ◽  
T Kikawa ◽  
...  

Abstract A high-pressure xenon gas time projection chamber, with a unique cellular readout structure based on electroluminescence, has been developed for a large-scale neutrinoless double-beta decay search. In order to evaluate the detector performance and validate its design, a 180 L size prototype is being constructed and its commissioning with partial detector has been performed. The obtained energy resolution at 4.0 bar is 1.73 $\pm$ 0.07% (FWHM) at 511 keV. The energy resolution at the $^{136}$Xe neutrinoless double-beta decay $Q$-value is estimated to be between 0.79 and 1.52% (FWHM) by extrapolation. Reconstructed event topologies show patterns peculiar to the track endpoint that can be used to distinguish $0\nu\beta\beta$ signals from gamma-ray backgrounds.


2004 ◽  
Vol 67 (11) ◽  
pp. 2011-2016 ◽  
Author(s):  
Yu. M. Gavriljuk ◽  
A. M. Gangapshev ◽  
V. V. Kuzminov ◽  
N. Ya. Osetrova ◽  
S. I. Panasenko ◽  
...  

2013 ◽  
Vol 40 (12) ◽  
pp. 125203 ◽  
Author(s):  
S Cebrián ◽  
T Dafni ◽  
H Gómez ◽  
D C Herrera ◽  
F J Iguaz ◽  
...  

Universe ◽  
2019 ◽  
Vol 5 (1) ◽  
pp. 10 ◽  
Author(s):  
Alessio Caminata ◽  
Douglas Adams ◽  
Chris Alduino ◽  
Krystal Alfonso ◽  
Frank Avignone ◽  
...  

The Cryogenic Underground Observatory for Rare Events (CUORE) is the first bolometric experiment searching for neutrinoless double beta decay that has been able to reach the 1-ton scale. The detector consists of an array of 988 TeO 2 crystals arranged in a cylindrical compact structure of 19 towers, each of them made of 52 crystals. The construction of the experiment was completed in August 2016 and the data taking started in spring 2017 after a period of commissioning and tests. In this work we present the neutrinoless double beta decay results of CUORE from examining a total TeO 2 exposure of 86.3 kg yr , characterized by an effective energy resolution of 7.7 keV FWHM and a background in the region of interest of 0.014 counts / ( keV kg yr ) . In this physics run, CUORE placed a lower limit on the decay half-life of neutrinoless double beta decay of 130 Te > 1.3 · 10 25 yr (90% C.L.). Moreover, an analysis of the background of the experiment is presented as well as the measurement of the 130 Te 2 ν β β decay with a resulting half-life of T 1 / 2 2 ν = [ 7.9 ± 0.1 ( stat . ) ± 0.2 ( syst . ) ] × 10 20 yr which is the most precise measurement of the half-life and compatible with previous results.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
D. R. Artusa ◽  
F. T. Avignone ◽  
O. Azzolini ◽  
M. Balata ◽  
T. I. Banks ◽  
...  

Neutrinoless double-beta (0νββ) decay is a hypothesized lepton-number-violating process that offers the only known means of asserting the possible Majorana nature of neutrino mass. The Cryogenic Underground Observatory for Rare Events (CUORE) is an upcoming experiment designed to search for 0νββdecay of130Te using an array of 988 TeO2crystal bolometers operated at 10 mK. The detector will contain 206 kg of130Te and have an average energy resolution of 5 keV; the projected 0νββdecay half-life sensitivity after five years of livetime is 1.6 × 1026 y at 1σ(9.5 × 1025 y at the 90% confidence level), which corresponds to an upper limit on the effective Majorana mass in the range 40–100 meV (50–130 meV). In this paper, we review the experimental techniques used in CUORE as well as its current status and anticipated physics reach.


2015 ◽  
Vol 10 (12) ◽  
pp. P12020-P12020 ◽  
Author(s):  
J. Renner ◽  
A. Cervera ◽  
J.A. Hernando ◽  
A. Imzaylov ◽  
F. Monrabal ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document