compact structure
Recently Published Documents


TOTAL DOCUMENTS

871
(FIVE YEARS 306)

H-INDEX

33
(FIVE YEARS 8)

2022 ◽  
Vol 151 ◽  
pp. 106926
Author(s):  
Xiao Fu ◽  
Fajie Duan ◽  
Jiajia Jiang ◽  
Ruijia Bao ◽  
Changwen Liu ◽  
...  

2022 ◽  
Author(s):  
Mingna Qin ◽  
Bingjie Yao ◽  
Qiang Shi ◽  
Wang Tang ◽  
Shaoli Chen ◽  
...  

Abstract we present a novel surfacing coating to resolve the stability of α-AlH3. Inspired by the strong chemical adhesion of mussels, the polymerization of dopamine was first introduced to coat α-AlH3 through a simple situ polymerization. The α-AlH3 was used as a substrate. In-depth characterizations confirmed compact formation with PDA on α-AlH3 surface. The coated α-AlH3 sample was characterized by XRD XPS and SEM . The results show that a strong PDA film is formed on the surface of α-AlH3, the PDA@α-AlH3 retained primary morphology. The crystal form of α-AlH3 does not change after coated by PDA. The results of XPS analysis show that N1s appears on the material after coated by PDA, indicating that polydopamine is formed on the surface of α-AlH3. The moisture absorption tests show that the moisture absorption rate of α-AlH3 is greatly reduced after being coated with PDA. The excellent intact ability of PDA prevent α-AlH3 reacting with watered in the air. The thermal stability of α-AlH3 before and after coating was analyzed by DSC. This work demonstrates the successful applications of dopamine chemistry to α-AlH3, thereby providing a potential method for the metastable materials.


2022 ◽  
Author(s):  
Tamara Erceg ◽  
Gaja Brakus ◽  
Alena Stupar ◽  
Miroslav Cvetinov ◽  
Miroslav Hadnađev ◽  
...  

Abstract The paper presents the synthesis of hydrogels via free-radical polymerization, based on Chitosan (CS) grafted with Acrylic acid (AA), using a two-step procedure. Free-radical polymerization has given strong hydrogels with compact structure, dominant elastic behavior and long linear viscoelastic region. The results of rheological studies have shown that obtained hydrogels have significantly improved mechanical properties in comparison to chitosan hydrogels obtained by other sustainable methods. A step forward in the investigation of the potential application of chitosan hydrogels in wound dressing systems has been made by preparation of the bilayer design by embedding a layer of active compound-loaded alginate beads into the contact surface between two conjoined units of CS/AA hydrogels. Wild garlic (Allium ursinum L.) dried extract was used as an active compound because of its antimicrobial activity and green properties. This system has demonstrated pH-dependent release of extract and higher shear elastic modulus values than ordinary disc gels. A conducted study has given preliminary results for the possible application of bilayer chitosan - based hydrogels in wound dressing systems and represents the first step towards extrapolating the proposed design across other application fields.


2022 ◽  
Vol 355 ◽  
pp. 02057
Author(s):  
Wei Xiong ◽  
Yajun Ma ◽  
Zhen Wang ◽  
Weiwei Jiao ◽  
Wei Shi ◽  
...  

In order to meet the development needs of aerospace servo technology, the angular displacement sensor, which compact structure, high reliability, and be able to adapt to harsh working environments is used for the measurement and feedback of the high speed of the servo motor output shaft. The design of a two-redundant multi-turn absolute encoder based on a single-turn absolute encoder and a precision small modulus reducer, which realizes the high speed measurement of the servo motor shaft at 8000 rpm. Product performance meets the technical indicators of similar products of HEIDENHAIN encoders, can withstand high temperature, long working life, good dynamic performance, small space and light weight. System test and simulation analysis show that the design technical scheme is effective and feasible, can meet the requirements of the servo system.


2022 ◽  
Author(s):  
Shwetha Rai ◽  
◽  
Geetha M. ◽  
Preetham Kumar ◽  
Giridhar B. ◽  
...  

Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1589
Author(s):  
Yuxuan Ji ◽  
Kaixiang Xing ◽  
Kefa Cen ◽  
Mingjiang Ni ◽  
Haoran Xu ◽  
...  

Printed circuit heat exchanger (PCHE) is a promising regenerative device in the sCO2 power cycle, with the advantages of a large specific surface area and compact structure. Its tiny and complex flow channel structure brings enhanced heat transfer performance, while increasing pressure drop losses. It is, thus, important to balance heat transfer and flow resistance performances with the consideration of sCO2 as the working agent. Herein, three-dimensional models are built with a full consideration of fluid flow and heat transfer fields. A trapezoidal channel is developed and its thermal–hydraulic performances are compared with the straight, the S-shape, and the zigzag structures. Nusselt numbers and the Fanning friction factors are analyzed with respect to the changes in Reynolds numbers and structure geometric parameters. A sandwiched structure that couples two hot channels with one cold channel is further designed to match the heat transfer capacity and the velocity of sCO2 flows between different sides. Through this novel design, we can reduce the pressure drop by 75% and increase the regenerative efficiency by 5%. This work can serve as a solid reference for the design and applications of PCHEs.


2021 ◽  
Author(s):  
Kun Zhang ◽  
Junhui ZHANG ◽  
Minyao Gan ◽  
Huaizhi Zong ◽  
Ximeng Wang ◽  
...  

Abstract As a kind of hydraulic rotary actuator, helical hydraulic rotary actuator has the excellent characteristics of large angle, high torque and compact structure, which has been widely used in various fields. However, the core technology is in the hands of several companies and has not been disclosed, and the relevant reports are mostly limited to the component level. From the perspective of designing the driving system, the dynamic characteristics of the output when the helical rotary actuator is applied to the closed-loop system are explored. There are two main problems to be studied: one is to establish a reliable mathematical model, and the other is to consider the influence of system parameter perturbation on the output in practice. In this paper, firstly, the dynamic model of valve-controlled helical rotary actuator angle closed-loop system is derived in detail, which has never been reported in the existing literature. Then, the sensitivity analysis of 23 main parameters in the model with perturbation of 10% is carried out under nine working conditions. Finally, the system dynamics model and the sensitivity analysis results are verified by the prototype experiment and co-simulation, which shows the reliability of the theoretical results in this paper.


2021 ◽  
Author(s):  
Tarunnum Parvin ◽  
Lway Faisal Abdulrazak ◽  
Fahad Ahmed Al Zahrani ◽  
Sumaiya Akhtar Mitu ◽  
Md. Nadim Hossain ◽  
...  

Abstract A myriad of pensile but pertinent issues found in the optical fiber sensors can be seeked resolution based on the antiresonant reflecting optical waveguide (ARROW) working principle. Due to its compact structure, the anti-resonance based sensor has several advantages such as high sensitivity response, low confinement loss, and high stability that make the sensor more effective for health monitoring. In this manuscript, an anti-resonance fiber sensor has been proposed for the detection of tuberculosis cells. An analytical structure has been explored to simulate the characteristics of the ARROW. For the suggested structure, the Finite Element Method (FEM) is used to conduct its numerical investigations. The proposed optical sensor working on the ARROW principle was implemented on the Comsol Multiphysics software. From the numerical analysis, it is noted that the designed sensor has reached around 99% sensitivity with negligible confinement loss and single modality due to the excellent light-guiding properties of the anti-resonance fiber. Besides, lots of optical parameters such as effective area, V-Parameter, spot-size along beam divergence have been calculated over the wide wavelength region. The achieved result indicates the various applications suitability of Antiresonant Hollow-Core Fiber (ARHCF) as a tuberculosis sensor.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3371
Author(s):  
Yi Qiu ◽  
Zhuoqi Wen ◽  
Shiliang Mei ◽  
Jinxin Wei ◽  
Yuanyuan Chen ◽  
...  

Luminescent copper nanoclusters (Cu NCs) have shown great potential in light-emitting devices (LEDs), chemical sensing, catalysis and biological fields. However, their practical use has been restricted by poor stability, and study on the stability of Cu NCs solid powder along with the mechanism is absent. In this study, stablized Cu NCs powder was first obtained by cation crosslinking method. Compared with the powder synthesized by solvent precipitation method, the stability of Cu NCs powder crosslinked by ionic inducer Ce3+ was enhanced around 100-fold. The storage time when the fluorescence intensity decreased to 85% (T85) was improved from 2 h to 216 h, which is the longest so far. The results of characterizations indicated that the aggregation structure was formed by the binding of Ce3+ with the capping ligands of Cu NCs, which helped in obtaining Ce-Cu NCs powder from aggregate precipitation in solution. Furthermore, this compact structure could avoid the destruction of ambient moisture resulting in long-lasting fluorescence and almost unchanged physical form. This demonstrated that phosphor, with excellent characteristics of unsophisticated synthesis, easy preservation and stable fluorescence, showed great potential in light sources, display technology and especially in latent fingerprints visualization on different substrates for forensic science.


2021 ◽  
Author(s):  
Marijana Simic

The present study was carried out to demonstrate the combined effects of different maize flour, ascorbic acid and sugar on the physical, textural and sensory properties of composite breads. The composite flour was prepared using 70% of wheat flour and 30% of flour obtained from grain of differently coloured maize - light blue, blue, red and yellow maize flour. Chemical characterization of composite flours made with four different types of maize was also assessed. Furthermore, the content of total phenolics, flavonoids, anthocyanins, phenolic acids and antioxidant capacity in composite flours was determined. The total of 12 breads that were prepared, four of which were control composite breads, four breads with ascorbic acid, and four were breads with ascorbic acid and sugar. The content of total phenolic compounds showed clear differences among all composite flours. The anthocyanins content determined in composite flours was in the following descending order: blue>red>light blue, while in the yellow maize composite flour anthocyanins were not detected. The results showed that the addition of AsA (0.025%) and sugar (5%) negatively affected the volume as well as the specific volume of composite wheat-maize breads. The texture analysis showed that the addition of AsA in amount of 0.025% had no impact on springiness, cohesiveness and resilience of bread crumb, while it increased crumb hardness. However, composite breads made with AsA and AsA and sugar showed a more compact structure, with a larger number of cells and smaller mean cell areas. Bread samples with AsA and sugar in the tested doses had the lowest springiness, which is indicative of brittleness and reflects the tendency of the bread to crumble when slicing. Results of the sensory evaluation revealed that the AsA and sugar addition had a generally positive effect on the investigated sensory attributes.


Sign in / Sign up

Export Citation Format

Share Document