high energy resolution
Recently Published Documents


TOTAL DOCUMENTS

599
(FIVE YEARS 104)

H-INDEX

42
(FIVE YEARS 5)

2022 ◽  
Vol 17 (01) ◽  
pp. P01004
Author(s):  
N. Clements ◽  
D. Richtsmeier ◽  
A. Hart ◽  
M. Bazalova-Carter

Abstract Computed tomography (CT) imaging with high energy resolution detectors shows great promise in material decomposition and multi-contrast imaging. Multi-contrast imaging was studied by imaging a phantom with iodine (I), gadolinium (Gd), and gold (Au) solutions, and mixtures of the three using a cadmium telluride (CdTe) spectrometer with an energy resolution of 1% as well as with a cadmium zinc telluride (CZT) detector with an energy resolution of 13%. The phantom was imaged at 120 kVp and 1.1 mA with 7 mm of aluminum filtration. For the CdTe data collection, the phantom was imaged using a 0.2 mm diameter x-ray beam with 96 ten-second data acquisitions across the phantom at 45 rotation angles. For the CZT detector, we had 720 projections using a cone beam, and the six detector energy thresholds were set to 23, 33, 50, 64, 81, and 120 keV so that three thresholds corresponded to the K-edges of the contrast agents. Contrast agent isolation methods were then examined. K-edge subtraction and novel spectrometric algebraic image reconstruction (SAIR) were used for the CdTe data. K-edge subtraction alone was used for the CZT data. Linearity plots produced similar R 2 values and slopes for all three reconstruction methods. Comparing CdTe methods, SAIR offered less noise than CdTe K-edge subtraction and better geometric accuracy at low contrast concentrations. CdTe contrast agent images of I, Gd, and Au offered less noise and greater contrast than the CZT images, highlighting the benefits of high energy resolution CdTe detectors for possible use in pre-clinical or clinical CT imaging.


Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2255
Author(s):  
Anastasiia Zolotarova

This review aims to cover the history and recent developments on cryogenic bolometers for neutrinoless double beta decay (0ν2β) searches. A 0ν2β decay observation would confirm the total lepton charge non-conservation, which is related to a global U(1)LC symmetry. This discovery would also provide essential information on neutrino masses and nature, opening the door to new physics beyond the Standard Model. The bolometric technology shows good prospects for future ton-scale experiments that aim to fully investigate the inverted ordering region of neutrino masses. The big advantage of bolometers is the high energy resolution and the possibility of particle identification, as well as various methods of additional background rejection. The CUORE experiment has proved the feasibility of ton-scale cryogenic experiments, setting the most stringent limit on 130Te 0ν2β decay. Two CUPID demonstrators (CUPID-0 and CUPID-Mo) have set the most stringent limits on 82Se and 100Mo isotopes, respectively, with compatibly low exposures. Several experiments are developing new methods to improve the background in the region of interest with bolometric detectors. CUPID and AMoRE experiments aim to cover the inverted hierarchy region, using scintillating bolometers with hundreds of kg of 100Mo. We review all of these efforts here, with a focus on the different types of radioactive background and the measures put in place to mitigate them.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zhe Cheng ◽  
Ruiyang Li ◽  
Xingxu Yan ◽  
Glenn Jernigan ◽  
Jingjing Shi ◽  
...  

AbstractInterfaces impede heat flow in micro/nanostructured systems. Conventional theories for interfacial thermal transport were derived based on bulk phonon properties of the materials making up the interface without explicitly considering the atomistic interfacial details, which are found critical to correctly describing thermal boundary conductance. Recent theoretical studies predicted the existence of localized phonon modes at the interface which can play an important role in understanding interfacial thermal transport. However, experimental validation is still lacking. Through a combination of Raman spectroscopy and high-energy-resolution electron energy-loss spectroscopy in a scanning transmission electron microscope, we report the experimental observation of localized interfacial phonon modes at ~12 THz at a high-quality epitaxial Si-Ge interface. These modes are further confirmed using molecular dynamics simulations with a high-fidelity neural network interatomic potential, which also yield thermal boundary conductance agreeing well with that measured in time-domain thermoreflectance experiments. Simulations find that the interfacial phonon modes have an obvious contribution to the total thermal boundary conductance. Our findings significantly contribute to the understanding of interfacial thermal transport physics and have impact on engineering thermal boundary conductance at interfaces in applications such as electronics thermal management and thermoelectric energy conversion.


2021 ◽  
Vol 28 (6) ◽  
Author(s):  
D.-G. Liu ◽  
C.-H. Chang ◽  
L.-C. Chiang ◽  
M.-H. Lee ◽  
C.-F. Chang ◽  
...  

The optical design and performance of the recently opened 13A biological small-angle X-ray scattering (SAXS) beamline at the 3.0 GeV Taiwan Photon Source of the National Synchrotron Radiation Research Center are reported. The beamline is designed for studies of biological structures and kinetics in a wide range of length and time scales, from angstrom to micrometre and from microsecond to minutes. A 4 m IU24 undulator of the beamline provides high-flux X-rays in the energy range 4.0–23.0 keV. MoB4C double-multilayer and Si(111) double-crystal monochromators (DMM/DCM) are combined on the same rotating platform for a smooth rotation transition from a high-flux beam of ∼4 × 1014 photons s−1 to a high-energy-resolution beam of ΔE/E ≃ 1.5 × 10−4; both modes share a constant beam exit. With a set of Kirkpatrick–Baez (KB) mirrors, the X-ray beam is focused to the farthest SAXS detector position, 52 m from the source. A downstream four-bounce crystal collimator, comprising two sets of Si(311) double crystals arranged in a dispersive configuration, optionally collimate the DCM (vertically diffracted) beam in the horizontal direction for ultra-SAXS with a minimum scattering vector q down to 0.0004 Å−1, which allows resolving ordered d-spacing up to 1 µm. A microbeam, of 10–50 µm beam size, is tailored by a combined set of high-heat-load slits followed by micrometre-precision slits situated at the front-end 15.5 m position. The second set of KB mirrors then focus the beam to the 40 m sample position, with a demagnification ratio of ∼1.5. A detecting system comprising two in-vacuum X-ray pixel detectors is installed to perform synchronized small- and wide-angle X-ray scattering data collections. The observed beamline performance proves the feasibility of having compound features of high flux, microbeam and ultra-SAXS in one beamline.


2021 ◽  
Vol 11 (18) ◽  
pp. 8775
Author(s):  
Wojciech Błachucki ◽  
Yves Kayser ◽  
Anna Wach ◽  
Rafał Fanselow ◽  
Christopher Milne ◽  
...  

Aqueous iron (III) oxide nanoparticles were irradiated with pure self-amplified spontaneous emission (SASE) X-ray free-electron laser (XFEL) pulses tuned to the energy around the Fe K-edge ionization threshold. For each XFEL shot, the incident X-ray pulse spectrum and Fe Kβ emission spectrum were measured synchronously with dedicated spectrometers and processed through a reconstruction algorithm allowing for the determination of Fe Kβ resonant X-ray emission spectroscopy (RXES) plane with high energy resolution. The influence of the number of X-ray shots employed in the experiment on the reconstructed data quality was evaluated, enabling the determination of thresholds for good data acquisition and experimental times essential for practical usage of scarce XFEL beam times.


2021 ◽  
Vol 104 (3) ◽  
Author(s):  
Viktoriia Savchenko ◽  
Ji-Cai Liu ◽  
Michael Odelius ◽  
Nina Ignatova ◽  
Faris Gel'mukhanov ◽  
...  

2021 ◽  
Vol 29 (5) ◽  
pp. 40-44
Author(s):  
Joel Martis ◽  
Ze Zhang ◽  
Hao-Kun Li ◽  
Ann Marshall ◽  
Roy Kim ◽  
...  

Abstract:Electron microscopy has enabled atomic resolution imaging of matter. However, unlike optical spectroscopic imaging, traditional electron microscopes provide limited spectroscopic information in terms of their energy resolution. Only recently, owing to advances in monochromated STEM-EELS, have transmission electron microscopes (TEMs) been able to attain a high energy resolution. We recently proposed combining spectrally selective photoexcitation with HRTEM to achieve sub-nanometer scale optical imaging, a technique we called photoabsorption microscopy using electron analysis (PAMELA). To realize PAMELA-TEM experimentally, we constructed a TEM holder with an optical feedthrough, capable of photoexciting materials with different wavelengths. In this article, we describe our process for designing and fabricating an optical TEM specimen holder, highlighting important aspects of the design.


2021 ◽  
Vol 10 (1) ◽  
pp. 1-10
Author(s):  
Thiep Tran Duc ◽  
An Truong Thi ◽  
Hue Bui Minh ◽  
Cuong Phan Viet ◽  
Ha Nguyen Hong ◽  
...  

The isomeric ratio (IR) of isomeric pair 109m,gPd, produced in 110Pd(γ, n)109m,gCd reaction and 108Pd(n, γ)109m,gPd neutron capture reactions, induced by thermal, epithermal and mixed thermal-epithermal neutrons have been determined. The off-line activation technique using a spectroscopic system consisting of a HPGe semiconductor detector with high energy resolution and a PC based 8192 channel analyzer (CANBERRA) was applied. The investigated samples were prepared from the 99.99 % purity PdO and irradiated at the electron accelerator Microtron MT-25 of the Joint Institute for Nuclear Research Dubna, Russia. The data analysis and necessary corrections were made to upgrade the precision of the experimental method. The obtained results were discussed, compared and combined with those from other authors to point out the role of the reaction channels in nuclear reactions.


2021 ◽  
Vol 28 (5) ◽  
pp. 1364-1376
Author(s):  
Peter Walter ◽  
Andrei Kamalov ◽  
Averell Gatton ◽  
Taran Driver ◽  
Dileep Bhogadi ◽  
...  

The design of an angular array of electron time-of-flight (eToF) spectrometers is reported, intended for non-invasive spectral, temporal, and polarization characterization of single shots of high-repetition rate, quasi-continuous, short-wavelength free-electron lasers (FELs) such as the LCLS II at SLAC. This array also enables angle-resolved, high-resolution eToF spectroscopy to address a variety of scientific questions on ultrafast and nonlinear light–matter interactions at FELs. The presented device is specifically designed for the time-resolved atomic, molecular and optical science endstation (TMO) at LCLS II. In its final version, the spectrometer comprises up to 20 eToF spectrometers aligned to collect electrons from the interaction point, which is defined by the intersection of the incoming FEL radiation and a gaseous target. The full composition involves 16 spectrometers forming a circular equiangular array in the plane normal to the X-ray propagation and four spectrometers at 54.7° angle relative to the principle linear X-ray polarization axis with orientations in the forward and backward direction of the light propagation. The spectrometers are capable of independent and minimally chromatic electrostatic lensing and retardation, in order to enable simultaneous angle-resolved photo- and Auger–Meitner electron spectroscopy with high energy resolution. They are designed to ensure an energy resolution of 0.25 eV across an energy window of up to 75 eV, which can be individually centered via the adjustable retardation to cover the full range of electron kinetic energies relevant to soft X-ray methods, 0–2 keV. The full spectrometer array will enable non-invasive and online spectral-polarimetry measurements, polarization-sensitive attoclock spectroscopy for characterizing the full time–energy structure of SASE or seeded LCLS II pulses, and support emerging trends in molecular-frame spectroscopy measurements.


Sign in / Sign up

Export Citation Format

Share Document