A Novel Similarity Measure Framework on Financial Data Mining

Author(s):  
Zhai Fangwen ◽  
Yang Zehong ◽  
Song Yixu ◽  
Liu Yi

In data mining ample techniques use distance based measures for data clustering. Improving clustering performance is the fundamental goal in cluster domain related tasks. Many techniques are available for clustering numerical data as well as categorical data. Clustering is an unsupervised learning technique and objects are grouped or clustered based on similarity among the objects. A new cluster similarity finding measure, which is cosine like cluster similarity measure (CLCSM), is proposed in this paper. The proposed cluster similarity measure is used for data classification. Extensive experiments are conducted by taking UCI machine learning datasets. The experimental results have shown that the proposed cosinelike cluster similarity measure is superior to many of the existing cluster similarity measures for data classification.


Author(s):  
Roy Gelbard ◽  
Avichai Meged

Representing and consequently processing fuzzy data in standard and binary databases is problematic. The problem is further amplified in binary databases where continuous data is represented by means of discrete ‘1’ and ‘0’ bits. As regards classification, the problem becomes even more acute. In these cases, we may want to group objects based on some fuzzy attributes, but unfortunately, an appropriate fuzzy similarity measure is not always easy to find. The current paper proposes a novel model and measure for representing fuzzy data, which lends itself to both classification and data mining. Classification algorithms and data mining attempt to set up hypotheses regarding the assigning of different objects to groups and classes on the basis of the similarity/distance between them (Estivill-Castro & Yang, 2004) (Lim, Loh & Shih, 2000) (Zhang & Srihari, 2004). Classification algorithms and data mining are widely used in numerous fields including: social sciences, where observations and questionnaires are used in learning mechanisms of social behavior; marketing, for segmentation and customer profiling; finance, for fraud detection; computer science, for image processing and expert systems applications; medicine, for diagnostics; and many other fields. Classification algorithms and data mining methodologies are based on a procedure that calculates a similarity matrix based on similarity index between objects and on a grouping technique. Researches proved that a similarity measure based upon binary data representation yields better results than regular similarity indexes (Erlich, Gelbard & Spiegler, 2002) (Gelbard, Goldman & Spiegler, 2007). However, binary representation is currently limited to nominal discrete attributes suitable for attributes such as: gender, marital status, etc., (Zhang & Srihari, 2003). This makes the binary approach for data representation unattractive for widespread data types. The current research describes a novel approach to binary representation, referred to as Fuzzy Binary Representation. This new approach is suitable for all data types - nominal, ordinal and as continuous. We propose that there is meaning not only to the actual explicit attribute value, but also to its implicit similarity to other possible attribute values. These similarities can either be determined by a problem domain expert or automatically by analyzing fuzzy functions that represent the problem domain. The added new fuzzy similarity yields improved classification and data mining results. More generally, Fuzzy Binary Representation and related similarity measures exemplify that a refined and carefully designed handling of data, including eliciting of domain expertise regarding similarity, may add both value and knowledge to existing databases.


Sign in / Sign up

Export Citation Format

Share Document