A new instrument for optical forward scattering phase function surveys

Author(s):  
L.E. Estes ◽  
G. Fain ◽  
J.D. Harris
2021 ◽  
Vol 13 (18) ◽  
pp. 3677
Author(s):  
Zhenhua Zhang ◽  
Peng Chen ◽  
Zhihua Mao ◽  
Dapeng Yuan

An effective lidar simulator is vital for its system design and processing algorithms. However, laser transmission is a complex process due to the effects of sea surface and various interactions in seawater such as absorption, scattering, and so on. It is sophisticated and difficult for multiple scattering to accurately simulate. In this study, a multiple-scattering lidar model based on multiple-forward-scattering-single-backscattering approximation for oceanic lidar was proposed. Compared with previous analytic models, this model can work without assuming a homogeneous water and fixed scattering phase function. Besides, it takes consideration of lidar system and environmental parameters including receiver field of view, different scattering phase functions, particulate sizes, stratified water, and rough sea surface. One should note that because the scattering phase function is difficult to determine accurately, the simulation accuracy may be reduced in a complex oceanic environment. The Cox–Munk model used in our method simulates capillarity waves but ignores gravity waves, and the pulse stretching is not included. The wide-angle scattering occurs in the dense subsurface phytoplankton, which sometimes makes it hard to use this model. In this study, we firstly derived this method based on an analytical solution by convolving Gaussians of the forward-scattering contribution of layer dr and the energy density at R in the small-angle-scattering approximation. Then, the effects of multiple scattering and water optical properties were analyzed using the model. Meanwhile, the validation with Monte Carlo model was implemented. Their coefficient of determination is beyond 0.9, the RMSE is within 0.02, the MAD is within 0.02, and the MAPD is within 8%, which indicates that our model is efficient for oceanographic lidar simulation. Finally, we studied the effects of FOV, SPF, rough sea surface, stratified water, and particle size. These results can provide reference for the design of the oceanic lidar system and contribute to the processing of lidar echo signals.


2021 ◽  
Author(s):  
Alex Innanen ◽  
Brittney Cooper ◽  
Charissa Campbell ◽  
Scott Guzewich ◽  
Jacob Kloos ◽  
...  

<p>1. INTRODUCTION</p><p>The Mars Science Laboratory (MSL) is located in Gale Crater (4.5°S, 137.4°E), and has been performing cloud observations for the entirety of its mission, since its landing in 2012 [eg. 1,2,3]. One such observation is the Phase Function Sky Survey (PFSS), developed by Cooper et al [3] and instituted in Mars Year (MY) 34 to determine the scattering phase function of Martian water-ice clouds. The clouds of interest form during the Aphelion Cloud Belt (ACB) season (L<sub>s</sub>=50°-150°), a period of time during which there is an increase in the formation of water-ice clouds around the Martian equator [4]. The PFSS observation was also performed during the MY 35 ACB season and the current MY 36 ACB season.</p><p>Following the MY 34 ACB season, Mars experienced a global dust storm which lasted from L<sub>s</sub>~188° to L<sub>s</sub>~250° of that Mars year [5]. Global dust storms are planet-encircling storms which occur every few Mars years and can significantly impact the atmosphere leading to increased dust aerosol sizes [6], an increase in middle atmosphere water vapour [7], and the formation of unseasonal water-ice clouds [8]. While the decrease in visibility during the global dust storm itself made cloud observation difficult, comparing the scattering phase function prior to and following the global dust storm can help to understand the long-term impacts of global dust storms on water-ice clouds.</p><p>2. METHODS</p><p>The PFSS consists of 9 cloud movies of three frames each, taken using MSL’s navigation cameras, at a variety of pointings in order to observe a large range of scattering angles. The goal of the PFSS is to characterise the scattering properties of water-ice clouds and to determine ice crystal geometry.  In each movie, clouds are identified using mean frame subtraction, and the phase function is computed using the formula derived by Cooper et al [3]. An average phase function can then be computed for the entirety of the ACB season.</p><p><img src="https://contentmanager.copernicus.org/fileStorageProxy.php?f=gnp.eda718c85da062913791261/sdaolpUECMynit/1202CSPE&app=m&a=0&c=67584351a5c2fde95856e0760f04bbf3&ct=x&pn=gnp.elif&d=1" alt="Figure 1 – Temporal Distribution of Phase Function Sky Survey Observations for Mars Years 34 and 35" width="800" height="681"></p><p>Figure 1 shows the temporal distributions of PFSS observations taken during MYs 34 and 35. We aim to capture both morning and afternoon observations in order to study any diurnal variability in water-ice clouds.</p><p>3. RESULTS AND DISCUSSION</p><p>There were a total of 26 PFSS observations taken in MY 35 between L<sub>s</sub>~50°-160°, evenly distributed between AM and PM observations. Typically, times further from local noon (i.e. earlier in the morning or later in the afternoon) show stronger cloud features, and run less risk of being obscured by the presence of the sun. In all movies in which clouds are detected, a phase function can be calculated, and an average phase function determined for the whole ACB season.  </p><p>Future work will look at the water-ice cloud scattering properties for the MY 36 ACB season, allowing us to get more information about the interannual variability of the ACB and to further constrain the ice crystal habit. The PFSS observations will not only assist in our understanding of the long-term atmospheric impacts of global dust storms but also add to a more complete image of time-varying water-ice cloud properties.</p>


2012 ◽  
Vol 32 (9) ◽  
pp. 0901001
Author(s):  
孟祥谦 Meng Xiangqian ◽  
胡顺星 Hu Shunxing ◽  
王英俭 Wang Yingjian ◽  
胡欢陵 Hu Huanling

Sign in / Sign up

Export Citation Format

Share Document