Interfacing an ensemble Data Assimilation system with a 3D nonhydrostatic Coastal Ocean Model, an OSSE experiment

Author(s):  
Mariangel Garcia ◽  
Timothy Hoar ◽  
Mary Thomas ◽  
Barbara Bailey ◽  
Jose Castillo
2008 ◽  
Vol 136 (2) ◽  
pp. 463-482 ◽  
Author(s):  
Jeffrey S. Whitaker ◽  
Thomas M. Hamill ◽  
Xue Wei ◽  
Yucheng Song ◽  
Zoltan Toth

Abstract Real-data experiments with an ensemble data assimilation system using the NCEP Global Forecast System model were performed and compared with the NCEP Global Data Assimilation System (GDAS). All observations in the operational data stream were assimilated for the period 1 January–10 February 2004, except satellite radiances. Because of computational resource limitations, the comparison was done at lower resolution (triangular truncation at wavenumber 62 with 28 levels) than the GDAS real-time NCEP operational runs (triangular truncation at wavenumber 254 with 64 levels). The ensemble data assimilation system outperformed the reduced-resolution version of the NCEP three-dimensional variational data assimilation system (3DVAR), with the biggest improvement in data-sparse regions. Ensemble data assimilation analyses yielded a 24-h improvement in forecast skill in the Southern Hemisphere extratropics relative to the NCEP 3DVAR system (the 48-h forecast from the ensemble data assimilation system was as accurate as the 24-h forecast from the 3DVAR system). Improvements in the data-rich Northern Hemisphere, while still statistically significant, were more modest. It remains to be seen whether the improvements seen in the Southern Hemisphere will be retained when satellite radiances are assimilated. Three different parameterizations of background errors unaccounted for in the data assimilation system (including model error) were tested. Adding scaled random differences between adjacent 6-hourly analyses from the NCEP–NCAR reanalysis to each ensemble member (additive inflation) performed slightly better than the other two methods (multiplicative inflation and relaxation-to-prior).


2013 ◽  
Vol 141 (4) ◽  
pp. 1263-1284 ◽  
Author(s):  
Glen S. Romine ◽  
Craig S. Schwartz ◽  
Chris Snyder ◽  
Jeff L. Anderson ◽  
Morris L. Weisman

Abstract During the spring 2011 season, a real-time continuously cycled ensemble data assimilation system using the Advanced Research version of the Weather Research and Forecasting Model (WRF) coupled with the Data Assimilation Research Testbed toolkit provided initial and boundary conditions for deterministic convection-permitting forecasts, also using WRF, over the eastern two-thirds of the conterminous United States (CONUS). In this study the authors evaluate the mesoscale assimilation system and the convection-permitting forecasts, at 15- and 3-km grid spacing, respectively. Experiments employing different physics options within the continuously cycled ensemble data assimilation system are shown to lead to differences in the mean mesoscale analysis characteristics. Convection-permitting forecasts with a fixed model configuration are initialized from these physics-varied analyses, as well as control runs from 0.5° Global Forecast System (GFS) analysis. Systematic bias in the analysis background influences the analysis fit to observations, and when this analysis initializes convection-permitting forecasts, the forecast skill is degraded as bias in the analysis background increases. Moreover, differences in mean error characteristics associated with each physical parameterization suite lead to unique errors of spatial, temporal, and intensity aspects of convection-permitting rainfall forecasts. Observation bias by platform type is also shown to impact the analysis quality.


2015 ◽  
Vol 143 (5) ◽  
pp. 1583-1600 ◽  
Author(s):  
Florian Harnisch ◽  
Christian Keil

Abstract A kilometer-scale ensemble data assimilation system (KENDA) based on a local ensemble transform Kalman filter (LETKF) has been developed for the Consortium for Small-Scale Modeling (COSMO) limited-area model. The data assimilation system provides an analysis ensemble that can be used to initialize ensemble forecasts at a horizontal grid resolution of 2.8 km. Convective-scale ensemble forecasts over Germany using ensemble initial conditions derived by the KENDA system are evaluated and compared to operational forecasts with downscaled initial conditions for a short summer period during June 2012. The choice of the inflation method applied in the LETKF significantly affects the ensemble analysis and forecast. Using a multiplicative background covariance inflation does not produce enough spread in the analysis ensemble leading to a degradation of the ensemble forecasts. Inflating the analysis ensemble instead by either multiplicative analysis covariance inflation or relaxation inflation methods enhances the analysis spread and is able to provide initial conditions that produce more consistent ensemble forecasts. The forecast quality for short forecast lead times up to 3 h is improved, and 21-h forecasts also benefit from the increased spread. Doubling the ensemble size has not only a clear positive impact on the analysis but also on the short-term ensemble forecasts, while a simple representation of model error perturbing parameters of the model physics has only a small impact. Precipitation and surface wind speed ensemble forecasts using the high-resolution KENDA-derived initial conditions are competitive compared to the operationally used downscaled initial conditions.


Sign in / Sign up

Export Citation Format

Share Document