global forecast system
Recently Published Documents


TOTAL DOCUMENTS

82
(FIVE YEARS 29)

H-INDEX

15
(FIVE YEARS 3)

2021 ◽  
Vol 20 (2) ◽  
pp. 147-159
Author(s):  
Jose Carlos Coello Fababa ◽  
Victoria Calle Montes

Se analizó la corriente en chorro de América del Sur (SALLJ, siglas en inglés) y la ocurrencia de precipitación sobre la selva del Perú, tomando en cuenta los datos del modelo atmosférico Global Forecast System (GFS) y datos de precipitación acumulada estimado por el satélite Tropical Rainfall Measuring Mission (TRMM) en los veranos australes comprendidos entre los años 2005 y 2014. Se utilizó la distribución de Weibull para el análisis estadístico del viento meridional del norte y el test estadístico no paramétrico de correlación de Kendall para asociar los eventos SALLJ definidos por los criterios de Whiteman et al. (1997) y Bonner (1968). Los resultados revelan que el comportamiento promedio de la componente meridional del viento fluctúa entre 1.2 y 11.7 m/s con variaciones de +/- 3.2 m/s, registrando un viento máximo de 21.4 m/s. De un total de 39 casos, el 53.8% se identificó con las condiciones propuestas por Whiteman y un 46.2% con las condiciones de Bonner. Se registró una precipitación máxima de 64.00 mm/día y mayor número de días con precipitaciones asociadas a eventos SALLJ para las 00 UTC.


Author(s):  
М.Ч. Залиханов ◽  
А.Х. Кагермазов ◽  
Л.Т. Созаева ◽  
К.М. Беккиев

Проведена оценка степени совпадения прогностических значений стратификации атмосферы с нарастающей заблаговременностью 24 часа, полученных из глобальной модели атмосферы GFS NCEP (Global Forecast System National Centers for Environmental Prediction) с фактическими данными аэрологического зондирования на основе корреляционного анализа. Актуальность работы заключается в том, что в настоящее время количество опасных природных явлений продолжает увеличиваться, в том числе и загрязнение атмосферы примесями, приводящими к глобальному потеплению. При прогнозировании опасных явлений для экологии входными данными являются значения полей метеопараметров по фактическим данным аэрологического зондирования атмосферы. Такие данные доступны только на отдельных метеостанциях, расположенных достаточно далеко друг от друга, что усложняет проведение исследований. Между тем инструменты для анализа и оценки распространения и рассеивания загрязняющих веществ в атмосфере в настоящее время получили значительное развитие. Сдерживающим фактором их более широкого применения заинтересованными структурами по прогнозированию качества воздуха, аварийно-спасательными службами, представителями авиации, государственными учреждениями и сообществом исследователей атмосферы является недостаток информации о текущем состоянии атмосферы, а также получение прогностических метеопараметров. Для решения этой проблемы предлагаются использовать данные глобальной модели атмосферы GFS NCEP. Целью исследования является определить правомерность замены фактических данных аэрологического зондирования атмосферы на прогностические поля стратифицированных метеопараметров из глобальной модели атмосферы. Методом исследования является один из методов статистического анализа данных - корреляционный анализ. В результате исследований получено, что коэффициенты корреляции между прогностическими и фактическими значениями температуры воздуха, температуры точки росы, скорости и направления ветра имеют высокие значения. Это делает возможными использование данных глобальной модели при математическом моделировании распространения загрязнения в атмосфере, а также прогнозе опасных стихийных явлений, таких как паводок, сильный ливень, град, сель, приводящих к нарушению природных экологических систем. The degree of matching of the predictive values of atmosphere stratification with an increasing lead time of 24 hours obtained from the global atmosphere model GFS NCEP (Global Forecast System National Centers for Environmental Prediction) and the actual data of aerological sounding based on correlation analysis was assessed. The relevance of the work lies in the fact that at present the number of natural hazards continues to increase, including atmospheric pollution with impurities leading to global warming. When predicting dangerous phenomena for the environment, the input data are the values of the fields of meteorological parameters based on the actual data of the aerological sounding of the atmosphere. Such data is available only at individual weather stations located far enough apart from each other, which complicates the research. Meanwhile, tools for analyzing and assessing the spread and dispersion of pollutants in the atmosphere have now received significant development. A limiting factor in their wider use by interested structures for predicting air quality, emergency services, aviation representatives, government agencies and the community of atmosphere researchers is the lack of information about the current state of the atmosphere, as well as obtaining predictive meteorological parameters. To solve this problem, data from the global atmosphere model GFS NCEP are proposed. The aim of the study is to determine the validity of replacing the actual data of the aerological sounding of the atmosphere with the predictive fields of stratified meteorological parameters from the global atmosphere model. The research method is correlation analysis, one of the methods of statistical data analysis. As a result of the research, it was found that the correlation coefficients between the predictive and actual values of air temperature, dew point temperature, wind speed and direction have high values. This makes it possible to use the data of the global model in mathematical modeling of atmospheric pollution, as well as the forecast of dangerous natural phenomena, such as floods, heavy rain, hail, mudslides, leading to disruption of natural ecological systems.


2021 ◽  
Author(s):  
Li Zhang ◽  
Raffaele Montuoro ◽  
Stuart A. McKeen ◽  
Barry Baker ◽  
Partha S. Bhattacharjee ◽  
...  

Abstract. NOAA’s National Weather Service (NWS) is on its way to deploy various operational prediction applications using the Unified Forecast System (https://ufscommunity.org/), a community-based coupled, comprehensive Earth modeling system. An aerosol model component developed in a collaboration between the Global Systems Laboratory, Chemical Science Laboratory, the Air Resources Laboratory, and Environmental Modeling Center (GSL, CSL, ARL, EMC) was coupled online with the FV3 Global Forecast System (FV3GFS) using the National Unified Operational Prediction Capability (NUOPC)-based NOAA Environmental Modeling System (NEMS) software framework. This aerosol prediction system replaced the NEMS GFS Aerosol Component (NGAC) system in the National Center for Environment Prediction (NCEP) production suite in September 2020 as one of the ensemble members of the Global Ensemble Forecast System (GEFS), dubbed GEFS-Aerosols v1. The aerosol component of atmospheric composition in GEFS is based on the Weather Research and Forecasting model (WRF-Chem) that was previously included into FIM-Chem (Zhang et al, 2021). GEFS-Aerosols includes bulk modules from the Goddard Chemistry Aerosol Radiation and Transport model (GOCART). Additionally, the biomass burning plume rise module from High-Resolution Rapid Refresh (HRRR)-Smoke was implemented; the GOCART dust scheme was replaced by the FENGSHA dust scheme (developed by ARL); the Blended Global Biomass Burning Emissions Product (GBBEPx V3) provides biomass burning emission and Fire Radiative Power (FRP) data; and the global anthropogenic emission inventories are derived from the Community Emissions Data System (CEDS). All sub-grid scale transport and deposition is handled inside the atmospheric physics routines, which required consistent implementation of positive definite tracer transport and wet scavenging in the physics parameterizations used by NCEP’s operational Global Forecast System based on FV3 (FV3GFS). This paper describes the details of GEFS-Aerosols model development and evaluation of real-time and retrospective runs using different observations from in situ measurement, satellite and aircraft data. GEFS-Aerosols predictions demonstrate substantial improvements for both composition and variability of aerosol distributions over those from the former operational NGAC system.


Author(s):  
Haowen Yue ◽  
Mekonnen Gebremichael ◽  
Vahid Nourani

Abstract Reliable weather forecasts are valuable in a number of applications, such as, agriculture, hydropower, and weather-related disease outbreaks. Global weather forecasts are widely used, but detailed evaluation over specific regions is paramount for users and operational centers to enhance the usability of forecasts and improve their accuracy. This study presents evaluation of the Global Forecast System (GFS) medium-range (1 day – 15 day) precipitation forecasts in the nine sub-basins of the Nile basin using NASA’s Integrated Multi-satellitE Retrievals (IMERG) “Final Run” satellite-gauge merged rainfall observations. The GFS products are available at a temporal resolution of 3-6 hours, spatial resolution of 0.25°, and its version-15 products are available since 12 June 2019. GFS forecasts are evaluated at a temporal scale of 1-15 days, spatial scale of 0.25° to all the way to the sub-basin scale, and for a period of one year (15 June 2019 – 15 June 2020). The results show that performance of the 1-day lead daily basin-averaged GFS forecast performance, as measured through the modified Kling-Gupta Efficiency (KGE), is poor (0 < KGE < 0.5) for most of the sub-basins. The factors contributing to the low performance are: (1) large overestimation bias in watersheds located in wet climate regimes in the northern hemispheres (Millennium watershed, Upper Atbara & Setit watershed, and Khashm El Gibra watershed), and (2) lower ability in capturing the temporal dynamics of watershed-averaged rainfall that have smaller watershed areas (Roseires at 14,110 sq. km and Sennar at 13,895 sq. km). GFS has better bias for watersheds located in the dry parts of the northern hemisphere or wet parts of the southern hemisphere, and better ability in capturing the temporal dynamics of watershed-average rainfall for large watershed areas. IMERG Early has better bias than GFS forecast for the Millennium watershed but still comparable and worse bias for the Upper Atbara & Setit, and Khashm El Gibra watersheds. The variation in the performance of the IMERG Early could be partly explained by the number of rain gauges used in the reference IMERG Final product, as 16 rain gauges were used for the Millennium watershed but only one rain gauge over each Upper Atbara & Setit, and Khashm El Gibra watershed. A simple climatological bias-correction of IMERG Early reduces in the bias in IMERG Early over most watersheds, but not all watersheds. We recommend exploring methods to increase the performance of GFS forecasts, including post-processing techniques through the use of both near-real-time and research-version satellite rainfall products.


2021 ◽  
Author(s):  
Patrick Campbell ◽  
Youhua Tang ◽  
Pius Lee ◽  
Barry Baker ◽  
Daniel Tong ◽  
...  

Abstract. A new dynamical core, known as the Finite Volume Cubed-Sphere (FV3) and developed at both NASA and NOAA, is used in NOAA’s Global Forecast System (GFS) and in limited area models (LAMs) for regional weather and air quality applications. NOAA has also upgraded the operational FV3GFS to version 16 (GFSv16), and includes a number of significant developmental advances to the model configuration, data assimilation, and underlying model physics, particularly for atmospheric composition to weather feedback. Concurrent with the GFSv16 upgrade, we couple the GFSv16 with the Community Multiscale Air Quality (CMAQ) model to form an advanced version of the National Air Quality Forecast Capability (NAQFC) that will continue to protect human and ecosystem health in the U.S. Here we describe the development of the FV3GFSv16 coupling with a “state-of-the-science” CMAQ model version 5.3.1. The GFS-CMAQ coupling is made possible by the seminal version of the NOAA-ARL Atmosphere-Chemistry Coupler (NACC), which became the next operational NAQFC system (i.e., NACC-CMAQ) on July 20, 2021. NACC-CMAQ has a number of scientific advancements that include satellite- based data acquisition technology to improve land cover and soil characteristics, and inline wildfire smoke and dust predictions that are vital to predictions of fine particulate matter (PM2.5) concentrations during hazardous events affecting society, ecosystems, and human health. The GFS-driven NACC-CMAQ has significantly different meteorological and chemical predictions than the previous operational NAQFC, where evaluation of NACC-CMAQ shows generally improved near-surface ozone and PM2.5 predictions and diurnal patterns, both of which are extended to a 72-hour (3-day) forecast with this system.


Author(s):  
Lucas D'Avila Marten ◽  
Francieli Jorge ◽  
Karin Marques ◽  
Fabricio Pereira Harter

O presente trabalho tem como objetivo avaliar o impacto da assimilação de dados pelo método variacional, na simulação do Weather Research and Forescast (WRF), em um caso de ciclogênese explosivo, ocorrida no sul do Brasil em 30 de junho de 2020. Avalia-se também a capacidade do Filtro Digital (FD), com a janela de Dolph-Chebyshev (FDDC), em filtrar ondas de gravidade espúrias nas soluções do modelo. A condição inicial para integração do WRF é gerada pelo Global Forecast System (GFS) das 12 UTC, fornecida pelo National Center for Enviroment Prediction (NCEP). Os dados de assimilação foram obtidos através das redes de compartilhamento mundial de dados do Research data Archive (RDA), além dos dados das estações da região sul do Brasil acessadas pelo Banco de Dados Meteorológicos do Instituto Nacional de Meteorologia (INMET). Foram definidos 4 experimentos, EXP1 - previsões do WRF, EXP2 - WRF com o Filtro Digital (WRFDF), EXP3 - WRF com assimilação variacional tridimensional (WRFDA), EXP4 - WRF com assimilação variacional tridimensional e Filtro Digital (WRFDADF). O Filtro Digital mostrou-se uma importante metodologia para eliminação do ruído, gerado pelo desequilíbrio entre os campos de massa e vento, no começo da integração do modelo. Destaca-se a diminuição do erro nos experimentos com assimilação de dados, em especial no vento em superfície.


Author(s):  
Ronak N. Patel ◽  
Sandra E. Yuter ◽  
Matthew A. Miller ◽  
Spencer R. Rhodes ◽  
Lily Bain ◽  
...  

2021 ◽  
Vol 5 (1) ◽  
pp. 41-50
Author(s):  
Deffi Munadiyat Putri ◽  
◽  
Aries Kristianto ◽  

Flood is one of the most common hydro-meteorological disasters. Bengawan Solo is one of the watersheds in Indonesia that also hit by this disaster. This study discusses the flood disaster in the Bengawan Solo area in early March 2019. The purpose of this study is to conduct a discharge simulation using numerical weather model Global Forecast System (GFS) data through Integrated Flood Analysis System (IFAS) so it is possible to predict discharge in the future. There are three types of numerical weather model GFS data that have been downscale using weather research and forecasting model which differentiated based on spin-up time. The numerical weather model product is then used as rainfall data input for IFAS simulation. Based on the analysis, the flood discharge simulation using an 84-hour spin-up time has a satisfactory performance in describing the change in discharge with respect to time. This happens because numerical weather models will be better at quantifying processes that occur on a meso scale with spatial scale of 10 to 1000 km. The result of this research shows that it is possible to predict river discharge up to 84 hours before the disaster so this is can support the mitigation process for hydrometeorological disasters.


Author(s):  
Albenis Pérez-Alarcón ◽  
Oscar Díaz-Rodríguez ◽  
José Carlos Fernández-Alvarez ◽  
Ramón Pérez-Suárez ◽  
Patricia Coll-Hidalgo

Resumen Se realizó un estudio de caso de varias configuraciones de modelos de pronóstico numérico para evaluar la habilidad de los mismos en el pronóstico de la intensidad y trayectoria de los ciclones tropicales. Para ello se seleccionaron 4 configuraciones del dominio de cómputo con 27-9 y 18-6 km de resolución para el HWRF (Hurricane Weather Research and Forecasting Model) y 4 configuraciones para el WRF (Weather Research and Forecasting Model), empleando el núcleo dinámico NMM (Non-hydrostatic Mesoscale Model) con la opción de seguimiento de vórtice. Se realizaron las simulaciones correspondientes al huracán Irma desde el 1ro al 12 de septiembre del 2017 inicializadas con salidas de pronóstico del GFS (Global Forecast System). En la evaluación realizada no se observaron diferencias notables entre las 8 configuraciones, aunque fue deficiente el pronóstico de la intensidad del huracán Irma, con un error en el pronóstico de la velocidad máxima del viento superior a los 50 km/h. La comparación de las salidas de cada configuración con los registros de las boyas y estaciones meteorológicas de superficie evidenció que el comportamiento de las variables viento y presión atmosférica tiene una tendencia similar a los valores registrados en las estaciones, con errores inferiores a los 3.8 m/s para la velocidad del viento y 3 hPa para la presión atmosférica. La configuración que mostró mejor habilidad para el pronóstico de ciclones tropicales fue HWRF_18-6-m (referida al modelo y la resolución horizontal empleada), aunque es la que más capacidad de cómputo requiere.


Sign in / Sign up

Export Citation Format

Share Document