data assimilation system
Recently Published Documents


TOTAL DOCUMENTS

761
(FIVE YEARS 187)

H-INDEX

64
(FIVE YEARS 7)

2022 ◽  
Vol 14 (2) ◽  
pp. 371
Author(s):  
Sina Voshtani ◽  
Richard Ménard ◽  
Thomas W. Walker ◽  
Amir Hakami

We present a parametric Kalman filter data assimilation system using GOSAT methane observations within the hemispheric CMAQ model. The assimilation system produces forecasts and analyses of concentrations and explicitly computes its evolving error variance while remaining computationally competitive with other data assimilation schemes such as 4-dimensional variational (4D-Var) and ensemble Kalman filter (EnKF). The error variance in this system is advected using the native advection scheme of the CMAQ model and updated at each analysis while the error correlations are kept fixed. We discuss extensions to the CMAQ model to include methane transport and emissions (both anthropogenic and natural) and perform a bias correction for the GOSAT observations. The results using synthetic observations show that the analysis error and analysis increments follow the advective flow while conserving the information content (i.e., total variance). We also demonstrate that the vertical error correlation contributes to the inference of variables down to the surface. In a companion paper, we use this assimilation system to obtain optimal assimilation of GOSAT observations.


2022 ◽  
Vol 2022 ◽  
pp. 1-12
Author(s):  
Hengmao Wang ◽  
Fei Jiang ◽  
Yi Liu ◽  
Dongxu Yang ◽  
Mousong Wu ◽  
...  

TanSat is China’s first greenhouse gases observing satellite. In recent years, substantial progresses have been achieved on retrieving column-averaged CO2 dry air mole fraction (XCO2). However, relatively few attempts have been made to estimate terrestrial net ecosystem exchange (NEE) using TanSat XCO2 retrievals. In this study, based on the GEOS-Chem 4D-Var data assimilation system, we infer the global NEE from April 2017 to March 2018 using TanSat XCO2. The inversion estimates global NEE at −3.46 PgC yr-1, evidently higher than prior estimate and giving rise to an improved estimate of global atmospheric CO2 growth rate. Regionally, our inversion greatly increases the carbon uptakes in northern mid-to-high latitudes and significantly enhances the carbon releases in tropical and southern lands, especially in Africa and India peninsula. The increase of posterior sinks in northern lands is mainly attributed to the decreased carbon release during the nongrowing season, and the decrease of carbon uptakes in tropical and southern lands basically occurs throughout the year. Evaluations against independent CO2 observations and comparison with previous estimates indicate that although the land sinks in the northern middle latitudes and southern temperate regions are improved to a certain extent, they are obviously overestimated in northern high latitudes and underestimated in tropical lands (mainly northern Africa), respectively. These results suggest that TanSat XCO2 retrievals may have systematic negative biases in northern high latitudes and large positive biases over northern Africa, and further efforts are required to remove bias in these regions for better estimates of global and regional NEE.


Agriculture ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1292
Author(s):  
Xiaolong Huang ◽  
Shuai Han ◽  
Chunxiang Shi

Temperature is one of the most important meteorological variables for global climate change and human sustainable development. It plays an important role in agroclimatic regionalization and crop production. To date, temperature data have come from a wide range of sources. A detailed understanding of the reliability and applicability of these data will help us to better carry out research in crop modelling, agricultural ecology and irrigation. In this study, temperature reanalysis products produced by the China Meteorological Administration Land Data Assimilation System (CLDAS), the U.S. Global Land Data Assimilation System (GLDAS) and the European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis version5 (ERA5)-Land are verified against hourly observations collected from 2265 national automatic weather stations (NAWS) in China for the period 2017–2019. The above three reanalysis systems are advanced and widely used multi-source data fusion and re-analysis systems at present. The station observations have gone through data Quality Control (QC) and are taken as “true values” in the present study. The three reanalysis temperature datasets were spatial interpolated using the bi-linear interpolation method to station locations at each time. By calculating the statistical metrics, the accuracy of the gridded datasets can be evaluated. The conclusions are as follows. (1) Based on the evaluation of temporal variability and spatial distribution as well as correlation and bias analysis, all the three reanalysis products are reasonable in China. (2) Statistically, the CLDAS product has the highest accuracy with the root mean square error (RMSE) of 0.83 °C. The RMSEs of the other two reanalysis datasets produced by ERA5-Land and GLDAS are 2.72 °C and 2.91 °C, respectively. This result indicates that the CLDAS performs better than ERA5-Land and GLDAS, while ERA5-Land performs better than GLDAS. (3) The accuracy of the data decreases with increasing elevation, which is common for all of the three products. This implies that more caution is needed when using the three reanalysis temperature data in mountainous regions with complex terrain. The major conclusion of this study is that the CLDAS product demonstrates a relatively high reliability, which is of great significance for the study of climate change and forcing crop models.


Author(s):  
J. Grisales-Casadiegos ◽  
C. Sarmiento-Cano ◽  
L.A. Núñez

We present a methodology to simulate the impact of the atmospheric models in the background particle flux on ground detectors using the Global Data Assimilation System. The methodology was within the ARTI simulation framework developed by the Latin American Giant Observatory Collaboration. The ground level secondary flux simulations were performed with a tropical climate at the city of Bucaramanga, Colombia. To validate our methodology, we built monthly profiles over Malargüe between 2006 and 2011, comparing the maximum atmospheric depth, X<sub>max</sub>, with those calculated with the Auger atmospheric option in CORSIKA. The results show significant differences between the predefined CORSIKA atmospheres and their corresponding Global Data Assimilation System atmospheric profiles.


2021 ◽  
Author(s):  
Lei Tian ◽  
Baoqing Zhang ◽  
Pute Wu

Abstract. Drought indices are hard to balance in terms of versatility (effectiveness for multiple types of drought), flexibility of timescales, and inclusivity (to what extent they include all physical processes). A lack of consistent source data increases the difficulty of quantifying drought. Here, we present a global monthly drought dataset from 1948 to 2010 based on a multitype and multiscalar drought index, the standardized moisture anomaly index incorporating snow dynamics (SZIsnow), driven by systematic fields from an advanced data assimilation system. The proposed SZIsnow dataset includes different physical water‒energy processes, especially snow processes. Our evaluation of the dataset demonstrates its ability to distinguish different types of drought across different timescales. Our assessment also indicates that the dataset adequately captures droughts across different spatial scales. The consideration of snow processes improved the capability of SZIsnow, and the improvement is particularly evident over snow-covered high-latitude (e.g., Arctic region) and high-altitude areas (e.g., Tibetan Plateau). We found that 59.66 % of Earth's land area exhibited a drying trend between 1948 and 2010, and the remaining 40.34 % exhibited a wetting trend. Our results also show that the SZIsnow dataset successfully captured the large-scale drought events that occurred across the world; there were 525 drought events with an area larger than 500,000 square kilometers globally during the study period, of which nearly 70 % had a duration longer than 6 months. Therefore, this new drought dataset is well suited to monitoring, assessing, and characterizing drought, and can serve as a valuable resource for future drought studies.


2021 ◽  
pp. 645-664
Author(s):  
F. Bouyssel ◽  
L. Berre ◽  
H. Bénichou ◽  
P. Chambon ◽  
N. Girardot ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document