okinawa trough
Recently Published Documents


TOTAL DOCUMENTS

636
(FIVE YEARS 175)

H-INDEX

53
(FIVE YEARS 6)

2022 ◽  
Author(s):  
◽  
Weiwei Wang

<p><b>This thesis uses continuous ambient noise data recorded by Ocean Bottom Seismometers (OBSs) to study seismic velocities in the upper crust of the overriding plate. The first and second projects (Chapters 3 and 4) focus on temporal seismic velocity variations in the northern Hikurangi subduction zone offshore the North Island, New Zealand, while the third project (Chapter 5) focuses on shear wave velocities in the southwestern Okinawa Trough offshore northeastern Taiwan. In the first project (Chapters 3), we investigate a region of frequent slow slip events (SSEs) offshore Gisborne, North Island, New Zealand. From September to October 2014, an SSE occurred with a slip over 250 mm and was recorded successfully by the Hikurangi Ocean Bottom Investigation of Tremor and Slow Slip deployment II (HOBITSS II). We apply coda wave interferometry on the ambient noise data acquired by nine OBSs deployed by the HOBITSS II to study the seismic velocity variations related to the SSE. The average velocity variations display a decrease on the order of 0.05% during the SSE, followed by an increase of similar magnitude afterwards. Two hypotheses are proposed to explain our observation. The first hypothesis, which has been suggested by previous studies, considers that the velocity decrease during the SSE is caused by more fluids migrating into the upper plate as the SSE breaks a low-permeability seal on the plate boundary. After the SSE, the fluids in the upper plate diffuse gradually and the velocity increases; The second hypothesis is that before the SSE, elastic strain accumulates causing contraction and reduction of porosity and therefore increase of velocity (the velocity increase between SSEs). During the SSE, the velocity decrease is caused by increased porosity as the SSE relieves the accumulated elastic strain on the plate interface, which results in dilation. After the SSE, stress and strain accumulate again, causing a porosity decrease and a velocity increase back to the original value. This study demonstrates that the velocity variations related to SSEs are observable and provides evidence for slow slip mechanism hypotheses.</b></p> <p>The second project (Chapter 4) focuses on the temporal seismic velocity variations associated with an SSE in 2019 offshore Gisborne, North Island, New Zealand. This is a later SSE in the same area as the first project (Chapters 3). Based on the success of the HOBITSS II, more ocean bottom instruments were deployed in the northern Hikurangi subduction zone from 2018 to 2019 (HOBITSS V). An SSE lasting approximately one month from the end of March to the beginning of May 2019 occurred during the deployment and was recorded by the network. The main slip was south of the deployment and the slip beneath the deployment was up to 150 mm. This study applies coda wave interferometry on the ambient noise data acquired by five OBSs and computes seismic velocity variations to investigate their relation to the SSE. A velocity decrease on the order of 0.015% during the SSE and an increase back to the original velocity value are observed at 1–2.5 s. This supports the two hypotheses proposed in Chapters 3: fluid migration and/or stain changes through the SSE cycle. In addition, velocity variations computed from individual stations show velocity increases before the SSE, which are destructively interfered in their average. Such a situation could occur if the SSE migrated across the network. If the velocity increases before the SSE from individual stations are real, they can be only explained by the hypothesis of crustal strain changes (the second hypothesis in project 1). However, fluid migration (the first hypothesis in project 1) may still happen concomitantly.</p> <p>The third project focuses on the tectonics in southwestern Okinawa Trough offshore northeastern Taiwan. The southwestern Okinawa Trough is an active back-arc basin, extending and rifting within the continental lithosphere. The tectonic development of the back-arc basin is still not well-understood. This study uses continuous ambient noise data recorded by 34 OBSs deployed by Academia Sinica at various periods from 2010 to 2018. Cross-correlations on vertical seismic components and pressure gauges are computed to construct Rayleigh/Scholte waves to study the shear wave velocity structure in the southwestern Okinawa Trough. Phase velocities are measured from the Rayleigh/Scholte waves. Shear velocities are inverted from the phase velocities. Results show the velocity in the south of the back-arc rifting axis near the axis is slower than the velocity in the north of the rifting axis, suggesting the velocity structure in the southwestern Okinawa Trough is asymmetric along the rifting axis. Previous studies have shown high heat flows (about 110mW/m 2 on average) in the south of the rifting axis. The low velocity in the south could be caused by the high heat flow that may be related to asymmetric back-arc extension and/or rifting. This study presents the shear wave velocity structure in the southwest Okinawa Trough is asymmetric along the rifting axis, which implies the back-arc extending/rifting is asymmetric in the study region. This study also suggests effective techniques for OBS noise corrections and unwrapping the cycle skipping of phase velocity measurements.</p> <p>In summary, this thesis represents three projects focusing on seismic velocities in two subduction zones using ambient noise data collected by OBSs. The first and second projects study the temporal velocity variations and the relation to SSEs. Both studies observe velocity decreases during the SSEs and increases after the SSEs, supporting two hypotheses of fluid migration and/or stain changes through the SSE cycle. The third project finds the shear velocity structure in the southwestern Okinawa Trough is asymmetric along the rifting center, which may imply the back-arc extension is asymmetric.</p>


2022 ◽  
Author(s):  
◽  
Weiwei Wang

<p><b>This thesis uses continuous ambient noise data recorded by Ocean Bottom Seismometers (OBSs) to study seismic velocities in the upper crust of the overriding plate. The first and second projects (Chapters 3 and 4) focus on temporal seismic velocity variations in the northern Hikurangi subduction zone offshore the North Island, New Zealand, while the third project (Chapter 5) focuses on shear wave velocities in the southwestern Okinawa Trough offshore northeastern Taiwan. In the first project (Chapters 3), we investigate a region of frequent slow slip events (SSEs) offshore Gisborne, North Island, New Zealand. From September to October 2014, an SSE occurred with a slip over 250 mm and was recorded successfully by the Hikurangi Ocean Bottom Investigation of Tremor and Slow Slip deployment II (HOBITSS II). We apply coda wave interferometry on the ambient noise data acquired by nine OBSs deployed by the HOBITSS II to study the seismic velocity variations related to the SSE. The average velocity variations display a decrease on the order of 0.05% during the SSE, followed by an increase of similar magnitude afterwards. Two hypotheses are proposed to explain our observation. The first hypothesis, which has been suggested by previous studies, considers that the velocity decrease during the SSE is caused by more fluids migrating into the upper plate as the SSE breaks a low-permeability seal on the plate boundary. After the SSE, the fluids in the upper plate diffuse gradually and the velocity increases; The second hypothesis is that before the SSE, elastic strain accumulates causing contraction and reduction of porosity and therefore increase of velocity (the velocity increase between SSEs). During the SSE, the velocity decrease is caused by increased porosity as the SSE relieves the accumulated elastic strain on the plate interface, which results in dilation. After the SSE, stress and strain accumulate again, causing a porosity decrease and a velocity increase back to the original value. This study demonstrates that the velocity variations related to SSEs are observable and provides evidence for slow slip mechanism hypotheses.</b></p> <p>The second project (Chapter 4) focuses on the temporal seismic velocity variations associated with an SSE in 2019 offshore Gisborne, North Island, New Zealand. This is a later SSE in the same area as the first project (Chapters 3). Based on the success of the HOBITSS II, more ocean bottom instruments were deployed in the northern Hikurangi subduction zone from 2018 to 2019 (HOBITSS V). An SSE lasting approximately one month from the end of March to the beginning of May 2019 occurred during the deployment and was recorded by the network. The main slip was south of the deployment and the slip beneath the deployment was up to 150 mm. This study applies coda wave interferometry on the ambient noise data acquired by five OBSs and computes seismic velocity variations to investigate their relation to the SSE. A velocity decrease on the order of 0.015% during the SSE and an increase back to the original velocity value are observed at 1–2.5 s. This supports the two hypotheses proposed in Chapters 3: fluid migration and/or stain changes through the SSE cycle. In addition, velocity variations computed from individual stations show velocity increases before the SSE, which are destructively interfered in their average. Such a situation could occur if the SSE migrated across the network. If the velocity increases before the SSE from individual stations are real, they can be only explained by the hypothesis of crustal strain changes (the second hypothesis in project 1). However, fluid migration (the first hypothesis in project 1) may still happen concomitantly.</p> <p>The third project focuses on the tectonics in southwestern Okinawa Trough offshore northeastern Taiwan. The southwestern Okinawa Trough is an active back-arc basin, extending and rifting within the continental lithosphere. The tectonic development of the back-arc basin is still not well-understood. This study uses continuous ambient noise data recorded by 34 OBSs deployed by Academia Sinica at various periods from 2010 to 2018. Cross-correlations on vertical seismic components and pressure gauges are computed to construct Rayleigh/Scholte waves to study the shear wave velocity structure in the southwestern Okinawa Trough. Phase velocities are measured from the Rayleigh/Scholte waves. Shear velocities are inverted from the phase velocities. Results show the velocity in the south of the back-arc rifting axis near the axis is slower than the velocity in the north of the rifting axis, suggesting the velocity structure in the southwestern Okinawa Trough is asymmetric along the rifting axis. Previous studies have shown high heat flows (about 110mW/m 2 on average) in the south of the rifting axis. The low velocity in the south could be caused by the high heat flow that may be related to asymmetric back-arc extension and/or rifting. This study presents the shear wave velocity structure in the southwest Okinawa Trough is asymmetric along the rifting axis, which implies the back-arc extending/rifting is asymmetric in the study region. This study also suggests effective techniques for OBS noise corrections and unwrapping the cycle skipping of phase velocity measurements.</p> <p>In summary, this thesis represents three projects focusing on seismic velocities in two subduction zones using ambient noise data collected by OBSs. The first and second projects study the temporal velocity variations and the relation to SSEs. Both studies observe velocity decreases during the SSEs and increases after the SSEs, supporting two hypotheses of fluid migration and/or stain changes through the SSE cycle. The third project finds the shear velocity structure in the southwestern Okinawa Trough is asymmetric along the rifting center, which may imply the back-arc extension is asymmetric.</p>


2022 ◽  
Author(s):  
◽  
Weiwei Wang

<p><b>This thesis uses continuous ambient noise data recorded by Ocean Bottom Seismometers (OBSs) to study seismic velocities in the upper crust of the overriding plate. The first and second projects (Chapters 3 and 4) focus on temporal seismic velocity variations in the northern Hikurangi subduction zone offshore the North Island, New Zealand, while the third project (Chapter 5) focuses on shear wave velocities in the southwestern Okinawa Trough offshore northeastern Taiwan. In the first project (Chapters 3), we investigate a region of frequent slow slip events (SSEs) offshore Gisborne, North Island, New Zealand. From September to October 2014, an SSE occurred with a slip over 250 mm and was recorded successfully by the Hikurangi Ocean Bottom Investigation of Tremor and Slow Slip deployment II (HOBITSS II). We apply coda wave interferometry on the ambient noise data acquired by nine OBSs deployed by the HOBITSS II to study the seismic velocity variations related to the SSE. The average velocity variations display a decrease on the order of 0.05% during the SSE, followed by an increase of similar magnitude afterwards. Two hypotheses are proposed to explain our observation. The first hypothesis, which has been suggested by previous studies, considers that the velocity decrease during the SSE is caused by more fluids migrating into the upper plate as the SSE breaks a low-permeability seal on the plate boundary. After the SSE, the fluids in the upper plate diffuse gradually and the velocity increases; The second hypothesis is that before the SSE, elastic strain accumulates causing contraction and reduction of porosity and therefore increase of velocity (the velocity increase between SSEs). During the SSE, the velocity decrease is caused by increased porosity as the SSE relieves the accumulated elastic strain on the plate interface, which results in dilation. After the SSE, stress and strain accumulate again, causing a porosity decrease and a velocity increase back to the original value. This study demonstrates that the velocity variations related to SSEs are observable and provides evidence for slow slip mechanism hypotheses.</b></p> <p>The second project (Chapter 4) focuses on the temporal seismic velocity variations associated with an SSE in 2019 offshore Gisborne, North Island, New Zealand. This is a later SSE in the same area as the first project (Chapters 3). Based on the success of the HOBITSS II, more ocean bottom instruments were deployed in the northern Hikurangi subduction zone from 2018 to 2019 (HOBITSS V). An SSE lasting approximately one month from the end of March to the beginning of May 2019 occurred during the deployment and was recorded by the network. The main slip was south of the deployment and the slip beneath the deployment was up to 150 mm. This study applies coda wave interferometry on the ambient noise data acquired by five OBSs and computes seismic velocity variations to investigate their relation to the SSE. A velocity decrease on the order of 0.015% during the SSE and an increase back to the original velocity value are observed at 1–2.5 s. This supports the two hypotheses proposed in Chapters 3: fluid migration and/or stain changes through the SSE cycle. In addition, velocity variations computed from individual stations show velocity increases before the SSE, which are destructively interfered in their average. Such a situation could occur if the SSE migrated across the network. If the velocity increases before the SSE from individual stations are real, they can be only explained by the hypothesis of crustal strain changes (the second hypothesis in project 1). However, fluid migration (the first hypothesis in project 1) may still happen concomitantly.</p> <p>The third project focuses on the tectonics in southwestern Okinawa Trough offshore northeastern Taiwan. The southwestern Okinawa Trough is an active back-arc basin, extending and rifting within the continental lithosphere. The tectonic development of the back-arc basin is still not well-understood. This study uses continuous ambient noise data recorded by 34 OBSs deployed by Academia Sinica at various periods from 2010 to 2018. Cross-correlations on vertical seismic components and pressure gauges are computed to construct Rayleigh/Scholte waves to study the shear wave velocity structure in the southwestern Okinawa Trough. Phase velocities are measured from the Rayleigh/Scholte waves. Shear velocities are inverted from the phase velocities. Results show the velocity in the south of the back-arc rifting axis near the axis is slower than the velocity in the north of the rifting axis, suggesting the velocity structure in the southwestern Okinawa Trough is asymmetric along the rifting axis. Previous studies have shown high heat flows (about 110mW/m 2 on average) in the south of the rifting axis. The low velocity in the south could be caused by the high heat flow that may be related to asymmetric back-arc extension and/or rifting. This study presents the shear wave velocity structure in the southwest Okinawa Trough is asymmetric along the rifting axis, which implies the back-arc extending/rifting is asymmetric in the study region. This study also suggests effective techniques for OBS noise corrections and unwrapping the cycle skipping of phase velocity measurements.</p> <p>In summary, this thesis represents three projects focusing on seismic velocities in two subduction zones using ambient noise data collected by OBSs. The first and second projects study the temporal velocity variations and the relation to SSEs. Both studies observe velocity decreases during the SSEs and increases after the SSEs, supporting two hypotheses of fluid migration and/or stain changes through the SSE cycle. The third project finds the shear velocity structure in the southwestern Okinawa Trough is asymmetric along the rifting center, which may imply the back-arc extension is asymmetric.</p>


Viruses ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 108
Author(s):  
Wang Liu ◽  
Xiaowei Zheng ◽  
Xin Dai ◽  
Zhenfeng Zhang ◽  
Wenyan Zhang ◽  
...  

Viruses are far more abundant than cellular microorganisms in the marine ecosystem. However, very few viruses have so far been isolated from marine sediments, especially hydrothermal vent sediments, hindering the understanding of the biology and ecological functions of these tiny organisms. Here, we report the isolation and characterization of a temperate bacteriophage, named PVJ1, which infects Psychrobacillus from a hydrothermal vent field in Okinawa Trough. PVJ1 belongs to the Myoviridae family of the order Caudovirales. The tailed phage possesses a 53,187 bp linear dsDNA genome, with 84 ORFs encoding structural proteins, genome replication, host lysis, etc. in a modular pattern. The phage genome is integrated into the host chromosome near the 3′-end of deoD, a gene encoding purine nucleoside phosphorylase (PNP). The phage integration does not appear to disrupt the function of PNP. The phage DNA is packaged by the headful mechanism. Release of PVJ1 from the host cell was drastically enhanced by treatment with mitomycin C. Phages encoding an MCP sharing significant similarity (≥70% identical amino acids) with that of PVJ1 are widespread in diverse environments, including marine and freshwater sediments, soils, artificial ecosystems, and animal intestines, and primarily infect Firmicutes. These results are valuable to the understanding of the lifestyle and host interactions of bacterial viruses at the bottom of the ocean.


2021 ◽  
Vol 10 (1) ◽  
pp. 40
Author(s):  
Zhigang Zeng ◽  
Xiaohui Li ◽  
Yuxiang Zhang ◽  
Haiyan Qi

Determining the influence of subduction input on back-arc basin magmatism is important for understanding material transfer and circulation in subduction zones. Although the mantle source of Okinawa Trough (OT) magmas is widely accepted to be modified by subducted components, the role of slab-derived fluids is poorly defined. Here, major element, trace element, and Li, O and Mg isotopic compositions of volcanic lavas from the middle OT (MOT) and southern OT (SOT) were analyzed. Compared with the MOT volcanic lavas, the T9-1 basaltic andesite from the SOT exhibited positive Pb anomalies, significantly lower Nd/Pb and Ce/Pb ratios, and higher Ba/La ratios, indicating that subducted sedimentary components affected SOT magma compositions. The δ7Li, δ18O, and δ26Mg values of the SOT basaltic andesite (−5.05‰ to 4.98‰, 4.83‰ to 5.80‰ and −0.16‰ to −0.09‰, respectively) differed from those of MOT volcanic lavas. Hence, the effect of the Philippine Sea Plate subduction component, (low δ7Li and δ18O and high δ26Mg) on magmas in the SOT was clearer than that in the MOT. This contrast likely appears because the amounts of fluids and/or melts derived from altered oceanic crust (AOC, lower δ18O) and/or subducted sediment (lower δ7Li, higher δ18O and δ26Mg) injected into magmas in the SOT are larger than those in the MOT and because the injection ratio between subducted AOC and sediment is always >1 in the OT. The distance between the subducting slab and overlying magma may play a significant role in controlling the differences in subduction components injected into magmas between the MOT and SOT.


2021 ◽  
Vol 10 (1) ◽  
pp. 35
Author(s):  
Zhigang Zeng ◽  
Zuxing Chen ◽  
Haiyan Qi

The in situ element concentrations and the sulfur (S), and lead (Pb) isotopic compositions in anglesite were investigated for samples from seafloor hydrothermal fields in the Okinawa Trough (OT), Western Pacific. The anglesite grains are of two kinds: (1) low Pb/high S primary hydrothermal anglesite (PHA), which is formed by mixing of fluid and seawater, and (2) high Pb/low S secondary supergene anglesite (SSA), which is the product of low-temperature (<100 °C) alteration of galena in the seawater environment. The Ag and Bi in the SSA go through a second enrichment process during the formation of high Pb/low S anglesite by galena alteration, indicating that the SSA and galena, which may be the major minerals host for considerable quantities of Ag and Bi, are potentially Ag-Bi-enriched in the back-arc hydrothermal field. Moreover, REEs, S and Pb in the OT anglesite are likely to have been leached by fluids from local sub-seafloor volcanic rocks and/or sediments. A knowledge of the anglesite is useful for understanding the influence of volcanic rocks, sediments and altered subducted oceanic plate in hydrothermal systems, showing how trace metals behave during the formation of secondary minerals.


Crustaceana ◽  
2021 ◽  
Vol 94 (11-12) ◽  
pp. 1395-1405
Author(s):  
Yanrong Wang ◽  
Zhongli Sha ◽  
Xianqiu Ren

Abstract A new species of Eusiridae, Eusirus liui sp. nov. is described from a hydrothermal vent on Okinawa Trough, North-West Pacific. The new species differs from the other 30 congeneric species mainly by the following combination of characters: the acute rostrum reaching to 1/3 the length of peduncular article 1 of antenna 1; the absence of eyes; pleonite 3 without acute protrusion on dorsal margin, and the posterior margin of epimeron 3 with 18 serrations. A key to all known Eusirus species is provided herein. This is the fourth species within the Eusiridae that has been found from vent fields.


Sign in / Sign up

Export Citation Format

Share Document