Analyzing the Effect of Dilution of Precision on the Performance of GPS System

Author(s):  
Biswaranjan Pattanayak ◽  
Laxmipriya Moharana
1997 ◽  
Vol 19 (11) ◽  
pp. 1671-1675
Author(s):  
A.P.M Chiaradia ◽  
S da Silva Fernandes ◽  
R.Vilhena de Moraes

2021 ◽  
pp. 1-18
Author(s):  
Mariusz Specht

Abstract Research into statistical distributions of φ, λ and two-dimensional (2D) position errors of the global positioning system (GPS) enables the evaluation of its accuracy. Based on this, the navigation applications in which the positioning system can be used are determined. However, studies of GPS accuracy indicate that the empirical φ and λ errors deviate from the typical normal distribution, significantly affecting the statistical distribution of 2D position errors. Therefore, determining the actual statistical distributions of position errors (1D and 2D) is decisive for the precision of calculating the actual accuracy of the GPS system. In this paper, based on two measurement sessions (900,000 and 237,000 fixes), the distributions of GPS position error statistics in both 1D and 2D space are analysed. Statistical distribution measures are determined using statistical tests, the hypothesis on the normal distribution of φ and λ errors is verified, and the consistency of GPS position errors with commonly used statistical distributions is assessed together with finding the best fit. Research has shown that φ and λ errors for the GPS system are normally distributed. It is proven that φ and λ errors are more concentrated around the central value than in a typical normal distribution (positive kurtosis) with a low value of asymmetry. Moreover, φ errors are clearly more concentrated than λ errors. This results in larger standard deviation values for φ errors than λ errors. The differences in both values were 25–39%. Regarding the 2D position error, it should be noted that the value of twice the distance root mean square (2DRMS) is about 10–14% greater than the value of R95. In addition, studies show that statistical distributions such as beta, gamma, lognormal and Weibull are the best fit for 2D position errors in the GPS system.


2018 ◽  
Vol 10 (11) ◽  
pp. 1679 ◽  
Author(s):  
Jean-François Crétaux ◽  
Muriel Bergé-Nguyen ◽  
Stephane Calmant ◽  
Nurzat Jamangulova ◽  
Rysbek Satylkanov ◽  
...  

Calibration/Validation (C/V) studies using sites in the oceans have a long history and protocols are well established. Over lakes, C/V allows addressing problems such as the performance of the various retracking algorithms and evaluating the accuracy of the geophysical corrections for continental waters. This is achievable when measurements of specific and numerous field campaigns and a ground permanent network of level gauges and weather stations are processed. C/V consists of installation of permanent sites (weather stations, limnigraphs, and GPS reference points) and the organization of regular field campaigns. The lake Issykkul serves as permanent site of C/V, for a multi-mission purpose. The objective of this paper is to calculate the altimeter biases of Jason-3 and Sentinel-3A, both belonging to an operational satellite system which is used for the long-term monitoring of lake level variations. We have also determined the accuracy of the altimeters of these two satellites, through a comparison analysis with in situ data. In 2016 and 2017, three campaigns have been organized over this lake in order to estimate the absolute bias of the nadir altimeter onboard the Jason-3 and Sentinel-3A. The fieldwork consisted of measuring water height using a GPS system, carried on a boat, along the track of the altimeter satellite across the lake. It was performed at the time of the pass of the altimeter. Absolute altimeter biases were calculated by averaging the water height differences along the pass of the satellite (GPS from the boat system versus altimetry). Jason-3 operates in a Low Resolution Mode (LRM), while the Sentinel-3A operates in Synthetic Aperture Radar (SAR) mode. In this study we found that the absolute biases measured for Jason-3 were −28 ± 40 mm with the Ocean retracker and 206 ± 30 mm with the Ice-1 retracker. The biases for Sentinel-3A were −14 ± 20 mm with the Samosa (Ocean like) retracker and 285 ± 20 mm with the OCOG (Ice-1-like) retracker. We have also evaluated the accuracy of these two altimeters over Lake Issykkul which reached to 3 cm, for both the instruments, using the Ocean retracker.


2011 ◽  
Vol 51 (7) ◽  
pp. 1010-1013
Author(s):  
V. V. Demyanov ◽  
Yu. V. Yasyukevich
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document