Feed-forward optical carrier phase noise compensation in M-QAM transmitter

Author(s):  
Inwoong Kim ◽  
Olga Vassilieva ◽  
Paparao Palacharla ◽  
Motoyoshi Sekiya
Author(s):  
Tianhua Xu ◽  
Gunnar Jacobsen ◽  
Sergei Popov ◽  
Jie Li ◽  
Tiegen Liu ◽  
...  

Using coherent optical detection and digital signal processing, laser phase noise and equalization enhanced phase noise can be effectively mitigated using the feed-forward and feed-back carrier phase recovery approaches. In this paper, theoretical analyses of feed-back and feed-forward carrier phase recovery methods have been carried out in the long-haul high-speed n-level phase shift keying (n-PSK) optical fiber communication systems, involving a one-tap normalized least-mean-square (LMS) algorithm, a block-wise average algorithm, and a Viterbi-Viterbi algorithm. The analytical expressions for evaluating the estimated carrier phase and for predicting the bit-error-rate (BER) performance (such as the BER floors) have been presented and discussed in the n-PSK coherent optical transmission systems by considering both the laser phase noise and the equalization enhanced phase noise. The results indicate that the Viterbi-Viterbi carrier phase recovery algorithm outperforms the one-tap normalized LMS and the block-wise average algorithms for small phase noise variance (or effective phase noise variance), while the one-tap normalized LMS algorithm shows a better performance than the other two algorithms for large phase noise variance (or effective phase noise variance). In addition, the one-tap normalized LMS algorithm is more sensitive to the level of modulation formats.


Optik ◽  
2013 ◽  
Vol 124 (16) ◽  
pp. 2557-2560 ◽  
Author(s):  
Fangzheng Zhang ◽  
Jian Wu ◽  
Yan Li ◽  
Kun Xu ◽  
Jintong Lin

2016 ◽  
Vol 365 ◽  
pp. 220-224 ◽  
Author(s):  
Bin Wang ◽  
Xinyu Fan ◽  
Shuai Wang ◽  
Guangyao Yang ◽  
Qingwen Liu ◽  
...  

2015 ◽  
Vol 23 (15) ◽  
pp. 19142 ◽  
Author(s):  
Meng Xiang ◽  
Songnian Fu ◽  
Lei Deng ◽  
Ming Tang ◽  
Perry Shum ◽  
...  

Author(s):  
David Zabala-Blanco ◽  
Cesar A. Azurdia-Meza ◽  
Ali Dehghan Firoozabadi ◽  
Pablo Palacios Jativa ◽  
Marco Flores-Calero ◽  
...  

2021 ◽  
Author(s):  
Drazen Svehla

<p>Precise orbit determination (POD) of LEO satellites is done with a geodetic grade GPS receiver measuring carrier-phase between a LEO and GPS satellites, and in some cases this is supported with a DORIS instrument measuring Doppler between LEO and ground DORIS stations. Over the last 20 years we have demonstrated 1-2 cm accurate LEO POD and about 1 mm for inter-satellite distance. In order to increase the accuracy of the single satellite POD or satellites in LEO formation we propose an “optical GNSS receiver”, a cw-laser on a LEO satellite to measure Doppler between a LEO and GNSS satellite(s) equipped with SLR arrays and to develop it for the next gravity field mission.      </p><p>The objective of the ESA mission NGGM-MAGIC (Next Generation Gravity Mission - Mass-change and Geosciences International Constellation) is the long-term monitoring of the temporal variations of Earth’s gravity field at high resolution in time (3 days) and space (100 km), complementing the GRACE-FO mission from NASA at 45° orbit inclination. Currently, the GRACE-type mission design is based on optical carrier-phase measurements between two LEO satellites flying in a formation and separated by 200 km.</p><p>We propose an extension of the GRACE-type LEO-LEO concept by the “optical GNSS receiver” to provide Doppler measurements between a LEO satellite and GNSS satellite(s) equipped with SLR corner cubes by means of a cw-laser onboard a LEO satellite. Such a “vertical” LEO-GNSS observable is missing in the classical GRACE-type LEO-LEO concept. If Doppler measurements are carried out from the two GRACE-type satellites in the LEO orbit to the same GNSS satellite and by forming single-differences to that GNSS satellite one can remove any GNSS-orbit related error in the measured LEO-GNSS Doppler. In this way, radial orbit difference can be obtained between the two GRACE-type satellites (free of all GNSS orbit errors) and complement “horizontal” LEO-LEO measurements between the two GRACE-type satellites in the LEO orbit.</p><p>The non-mechanical laser beam steering has been developed for an angle window of -40° to +40° and it does not require a rotating and a big telescope in LEO (no clouds and atmosphere turbulences in LEO). Therefore, in such a beam-steering window, one could always observe with a fiber cw-laser one GNSS satellite close to the zenith from both GRACE-type satellites. The non-mechanical beam steering concept in zenith direction can be supported by a small 10-cm like (fixed) Ritchey-Chrétien telescope (COTS), a Cassegrain reflector design widely used for LEO satellites, e.g., for James Webb Space Telescope or for an optical Earth imaging with Cubesats with the 50 cm resolution.</p><p>Considering that several GNSS satellites in the field of view could be observed from a LEO satellite with this approach (including LAGEOS-1/2 and Etalon satellites) and the non-mechanical laser beam steering could be extended towards the LEO horizon, an “optical” GNSS receiver is a new concept for POD of LEO satellites. Here, we provide simulations of this new concept for LEO POD with GNSS/SLR constellations equipped with SLR arrays and discuss all new applications this new concept could bring.</p>


Sign in / Sign up

Export Citation Format

Share Document