Accelerating Dynamic Fault Tree Analysis Based on Stochastic Logic Utilizing GPGPUs

Author(s):  
Elham Cheshmikhani ◽  
Hamid R. Zarandi
Author(s):  
Koorosh Aslansefat ◽  
Sohag Kabir ◽  
Youcef Gheraibia ◽  
Yiannis Papadopoulos

2011 ◽  
Vol 110-116 ◽  
pp. 2416-2420 ◽  
Author(s):  
Li Ping Yang

In case of fault tree analysis of large complex system, the probability of bottom event in dynamic fault tree is uncertain in some cases. To address the problem, the paper presented a dynamic fault tree analysis method based on fuzzy set computation. The method separates logic attributes and timing attributes of dynamic logic gates. It can convert dynamic fault tree into static fault tree not considering timing constraints and obtain minimum cut set of static fuzzy fault tree with set operations, then the concept of minimum cut set is extended to dynamical minimum cut sequence. Thus, the dynamic fault tree was analyzed in both qualitative and quantitative aspects, which solve the problem that it is difficult to assign value of event probability in previously process.


2018 ◽  
Vol 14 (1) ◽  
pp. 370-379 ◽  
Author(s):  
Matthias Volk ◽  
Sebastian Junges ◽  
Joost-Pieter Katoen

Author(s):  
Kilian Hoflinger ◽  
Sascha Muller ◽  
Ting Peng ◽  
Moritz Ulmer ◽  
Daniel Ludtke ◽  
...  

Kerntechnik ◽  
2021 ◽  
Vol 86 (2) ◽  
pp. 164-172
Author(s):  
R. A. Fahmy ◽  
R. I. Gomaa

Abstract The safe and secure designs of any nuclear power plant together with its cost-effective operation without accidents are leading the future of nuclear energy. As a result, the Reliability, Availability, Maintainability, and Safety analysis of NPP systems is the main concern for the nuclear industry. But the ability to assure that the safety-related system, structure, and components could meet the safety functions in different events to prevent the reactor core damage requires new reliability analysis methods and techniques. The Fault Tree Analysis (FTA) is one of the most widely used logic and probabilistic techniques in system reliability assessment nowadays. The Dynamic fault tree technique extends the conventional static fault tree (SFT) by considering the time requirements to model and evaluate the nuclear power plant safety systems. Thus this paper focuses on developing a new Dynamic Fault Tree for the Auxiliary Feed-water System (AFWS) in a pressurized water reactor. The proposed dynamic model achieves a more realistic and accurate representation of the AFWS safety analysis by illustrating the complex failure mechanisms including interrelated dependencies and Common Cause Failure (CCF). A Simulation tool is used to simulate the proposed dynamic fault tree model of the AFWS for the quantitative analysis. The more realistic results are useful to establish reliability cantered maintenance program in which the maintenance requirements are determined based on the achievement of system reliability goals in the most cost-effective manner.


Sign in / Sign up

Export Citation Format

Share Document