Energy storage technologies for small scale wind conversion system

Author(s):  
Z. O. Olaofe ◽  
K. A. Folly
2017 ◽  
Vol 2 ◽  
pp. 36 ◽  
Author(s):  
Thu-Trang Nguyen ◽  
Viktoria Martin ◽  
Anders Malmquist ◽  
Carlos A.S. Silva

2021 ◽  
Vol 238 ◽  
pp. 02004
Author(s):  
Jacopo C. Alberizzi ◽  
Massimiliano Renzi

Small-scale hybrid energy systems are often composed by different power production technologies and adopted in mini-grids. In this work, a Mixed Integer Linear Programming optimization algorithm has been developed to compute the optimal scheduling of a micro-grid constituted by Internal Combustion Generators (ICGs) and a Storage System that can be either a conventional battery storage system or a Pumping Hydro energy Storage (PHES) based on Pump-as-Turbines. The algorithm computes the optimal energy generation scheduling of the micro-grid, minimizing a multi-objective fitness function constituted by the total costs of the energy system and the total CO2 and NOx emissions. In particular, the emissions are modelled with varying trends depending on the ICG load and not with constant values, which represents a simplification that is often adopted but that can induce misleading results. Furthermore, the algorithm takes into account all the physical constraints related to the generators and the storage system, such as maximum and minimum power generation, ramp-up and ramp-down limits and minimum up and down-time. The two energy storage technologies are compared and results show that a management strategy based on this algorithm can reduce significantly the total emissions of the system.


Author(s):  
Zara E. L’Heureux ◽  
Klaus S. Lackner

Utilities in regulated energy markets manage power generation, transmission, and delivery to consumers. Matching peak demand with peak generation is costly, and the increasing penetration of renewable energy into the grid adds complexity due to fluctuations in supply. A few options exist for addressing the task of balancing supply and demand, including demand response, energy storage, and time-varying pricing (tariffs). Arizona Public Service (APS), the largest electric utility company in Arizona, employs tariffs that charge more for electricity at certain times (on-peak periods) and a demand charge for the highest power demand throughout the billing period. Such tariffs incentivize end users to lower peak demand. Arizona State University (ASU), a public university with its largest campus in Tempe, AZ, participates in a time-of-use tariff structure with APS. Analysis in this paper shows that ASU’s 16MWdc of onsite solar capacity alone can lower its monthly electricity bills by over 10% by decreasing on-peak power demand. A novel contribution of the paper is the analysis of the value of small scale, on-campus energy storage in lowering the demand charge. Most analyses consider savings from transferring off-peak electric power to peak-electric power, but this paper considers using stored electricity solely to reduce peak demand and thus lower the demand charge. Small amounts of electricity could greatly reduce overall cost. An algorithm was developed and executed in Python to decide when on-campus storage should be charged and discharged. The critical part of the algorithm is to decide when to discharge. Deploying too early, or too late, will not change peak demand. The paper’s storage dispatch model is implemented alongside a financial model that calculates the savings in electricity bills and determines the net present value (NPV) of different storage technologies as a function of storage lifetime and installed capacity (kWh). The results show that, for all storage technologies considered, a positive NPV is realized. NPVs are very sensitive to actual power demand and thus vary from year to year. This is to be expected because the storage dispatch strategy operates on extreme values, which tend to include very rare events. This analysis uses actual data from ASU, which allows us to extend the results to other universities and commercial customers. The favorable results suggest that a smarter dispatch algorithm based on machine learning would enable further cost savings by determining what can be thought of as a shadow price of electricity.


2020 ◽  
Vol 1 (1) ◽  
pp. 110-115
Author(s):  
Sayed Belal Hashimi ◽  
Hameedullah Zaheb ◽  
Najib Rahman Sabory

Author(s):  
José Juan González Márquez ◽  
Margarita González Brambila

This chapter analyses the role of electricity storage as an innovative strategy to attain the Mexican Government’s goals regarding carbon dioxide emission reduction and energy transition. The survey includes the analysis of the different electricity storage technologies as well as the legal framework governing electricity storage as the fifth link of the energy supply chain from a comparative perspective. The authors discuss whether energy storage is a generation or a distribution/transmission asset. The chapter also analyses Mexico’s experiences in energy storage and briefly describes the way it is regulated in other jurisdictions. Finally, the authors propose the regulation of energy storage as a separate licensed activity.


2021 ◽  
Author(s):  
Ulrich Sigmar Schubert ◽  
Oliver Nolte ◽  
Ivan Volodin ◽  
Christian Stolze ◽  
Martin D. Hager

Flow Batteries (FBs) currently are one of the most promising large-scale energy storage technologies for energy grids with a large share of renewable electricity generation. Among the main technological challenges...


Sign in / Sign up

Export Citation Format

Share Document