Simulation modeling of polarization and depolarization current analysis for underground cable insulation

Author(s):  
S. Sulaiman ◽  
A. Mohd Ariffin ◽  
D. T. Kien
2014 ◽  
Vol 672-674 ◽  
pp. 769-772
Author(s):  
Wei Wei Li ◽  
Qiang Shi ◽  
Chi Wu

The effect of electrical aging on the trap parameter of HVAC XLPE cable insulation was investigated in this work. Thermally Stimulated Current (TSC) was used to measure depolarization current. The variation of trap parameter was calculated by means of start-up method based on the Gaussian fitting curve of TSC data. It was found that, the activation energy and the amount of trap charge obtained from TSC peak at 243K and 348K were increased after electrical aging, which may be benefit to characterize the degree of aging. The amount of trap charge in the two peaks increases as the increase of oxide dipole after electrical aging. And charge trapped described by the TSC peak at melting temperature increased after aging. It is considered that the increase of charge in the TSC peak can be attributed to the release of trap charge in the melt crystallization process, which corresponds to the α relaxation process in XLPE insulation.


Author(s):  
Mohamad Ghaffarian Niasar ◽  
W Li ◽  
Peter Vaessen

To avoid installation of expensive new underground cable connections in locations where peak load exceeds existing cable capacity, it is advantageous to transfer more power through a cable than its nominal power capacity, without endangering its reliability. Dynamic current rating of cables is a typical approach that is used to exceed the nominal cable capacity for a short time period. In this paper a new method for cable capacity enhancement based on dynamic voltage rating is introduced. The method can be applied if multilevel converters are installed at both ends of cable as will become more commonplace in the future when an inverter rich power system is realized. In this study the influence of trapezoidal voltage waveform on the electric field distribution inside cable insulation is investigated. The results shows that by using trapezoidal waveform it is possible to achieve a more homogeneous field distribution inside the cable insulation. This enables better utilization of the insulation system which translates into higher continuous power transfer capacity.


Sign in / Sign up

Export Citation Format

Share Document