Comparing simulation modelling and measurement results of polarization/depolarization current analysis on various underground cable insulation systems

Author(s):  
S. Sulaiman ◽  
A. Mohd Ariffin ◽  
D. T. Kien
2014 ◽  
Vol 672-674 ◽  
pp. 769-772
Author(s):  
Wei Wei Li ◽  
Qiang Shi ◽  
Chi Wu

The effect of electrical aging on the trap parameter of HVAC XLPE cable insulation was investigated in this work. Thermally Stimulated Current (TSC) was used to measure depolarization current. The variation of trap parameter was calculated by means of start-up method based on the Gaussian fitting curve of TSC data. It was found that, the activation energy and the amount of trap charge obtained from TSC peak at 243K and 348K were increased after electrical aging, which may be benefit to characterize the degree of aging. The amount of trap charge in the two peaks increases as the increase of oxide dipole after electrical aging. And charge trapped described by the TSC peak at melting temperature increased after aging. It is considered that the increase of charge in the TSC peak can be attributed to the release of trap charge in the melt crystallization process, which corresponds to the α relaxation process in XLPE insulation.


Author(s):  
Mochamad Zaeynuri Setiawan ◽  
Fachrudin Hunaini ◽  
Mohamad Mukhsim

The phenomenon that often arises in a substation is the problem of partial discharge in outgoing cable insulation. Partial discharge is a jump of positive and negative ions that are not supposed to meet so that it can cause a spark jump. If a partial discharge is left too long it can cause insulation failure, the sound of snakes like hissing and the most can cause a flashover on the outgoing cable. Then a partial discharge detection prototype was made in the cable insulation in order to anticipate the isolation interference in the outgoing cable. Can simplify the work of substation operators to check the reliability of insulation on the outgoing side of each cubicle. So it was compiled as a method for measuring sound waves caused by partial discharge in the process of measuring using a microphone sensor, the Arduino Mega 2560 module as a microcontroller, the LCD TFT as a monitoring and the MicroSD card module as its storage. The microphone sensor is a sensor that has a high sensitivity to sound, has 2 analog and digital readings, and is easily designed with a microcontroller. Basically the unit of measure measured at partial discharge is Decibels. The results of the prototype can be applied to the cubicle and the way it works is to match the prototype to the outgoing cubicle cable then measure from the cable boots connector to the bottom of the outgoing cable with a distance of 1 meter. Then the measurement results will be monitored on the TFT LCD screen in the form of measurement results, graphs and categories on partial discharge. In this design the measurement data made by the microphone can be stored with microSD so that it can make an evaluation of partial discharge handling in outgoing cable insulation.


Author(s):  
Mohamad Ghaffarian Niasar ◽  
W Li ◽  
Peter Vaessen

To avoid installation of expensive new underground cable connections in locations where peak load exceeds existing cable capacity, it is advantageous to transfer more power through a cable than its nominal power capacity, without endangering its reliability. Dynamic current rating of cables is a typical approach that is used to exceed the nominal cable capacity for a short time period. In this paper a new method for cable capacity enhancement based on dynamic voltage rating is introduced. The method can be applied if multilevel converters are installed at both ends of cable as will become more commonplace in the future when an inverter rich power system is realized. In this study the influence of trapezoidal voltage waveform on the electric field distribution inside cable insulation is investigated. The results shows that by using trapezoidal waveform it is possible to achieve a more homogeneous field distribution inside the cable insulation. This enables better utilization of the insulation system which translates into higher continuous power transfer capacity.


Sign in / Sign up

Export Citation Format

Share Document