Arc effect on single-phase reclosing time of an UHV power transmission line

Author(s):  
I. Dudurych ◽  
T. Gallagher ◽  
E. Rosolowski
2020 ◽  
Vol 178 ◽  
pp. 01053
Author(s):  
A.V. Vinogradov ◽  
A.V. Bukreev ◽  
V.E. Bolshev ◽  
A.V. Vinogradova ◽  
M.O. Ward ◽  
...  

The article presents portable timers-electricity meters (PTEM) which are devices for examining 0.4 kV power lines. There are two developed several versions of the devices: single-phase PTEM used to examine single-phase branch lines to consumers, and three-phase PTEM used for any power line sections. Also, the method to identify sections of power lines with increased electricity losses by means of these devices is presented. The paper considers the application of the three-phase PTEM with Wi-Fi technology to transmit data. Up to six independent three-phase PTEMs with Wi-Fi technology can be installed at different points of the power transmission line and transmit measured data in real time to the central unit. The use of these devices allows determining both technological and commercial losses of electricity in different power line sections and draw conclusions about whether these losses are overestimated. On the basis of this, measures are taken to reduce losses.


2020 ◽  
Vol 15 (3) ◽  
pp. 58-63
Author(s):  
Aleksandr Vinogradov ◽  
Alina Vinogradova ◽  
Aleksandr Psarev ◽  
Aleksandr Lansberg ◽  
Vadim Bol'shev

The purpose of the work is to increase the protection efficiency of 0.4 kV power lines with branch lines from single-phase short circuits by means of using the multi-contact switching system MSS-2-3. It can be not possible to provide the necessary sensitivity of protecting 0.4 kV power lines against one-phase short circuits when the power line length is too high and when the wire cross section does not provide the necessary value of the phase-zero loop resistance. Power line sectionalizing helps to solve this problem. It allows dividing power lines into sections, each is protected by its protective device. The settings of the protective devices installed at the beginning of a power transmission line and at the sectioning units (SU) are different. It provides the necessary selectivity of their work. At the same time, many power transmission lines (PTL) have long branch lines. The choice of the installation site of SU in such lines is difficult since a short circuit or other damage can occur both on a trunk line section and on a branch line. When installing SU both before a branch line and behind it, there might be the cases of unjustified power supply outages. Therefore, it is necessary to develop devices allowing for sectionalizing such power lines at the installation site of SU while ensuring the possibility of disconnecting both a trunk line section and a branch line directly. Such a device is a multi-contact switching system having two independent contact groups and three outputs (MSS-2-3). Installing the MSS-2-3 at a branch line point increases the security of the power transmission line against short circuits including single-phase ones and also increases power supply reliability to consumers since only a damaged section is disconnected in case of damage to the power transmission line. The feature of choosing the settings for the operation of switching devices installed in the MKS-2-3 to protect the switched power line sections is the need to take into account the parameters of a trunk line section and a branch line


2004 ◽  
Vol 19 (2) ◽  
pp. 854-860 ◽  
Author(s):  
I.M. Dudurych ◽  
T.J. Gallagher ◽  
E. Rosolowski

Author(s):  
M. I. Kazakevitch ◽  
Ye. V. Horokhov ◽  
M. S. Khorol'sky ◽  
S. V. Turbin

Sign in / Sign up

Export Citation Format

Share Document