Power System Inertia Monitoring Using Recursive Weighted Least Square Algorithm Under Ambient Conditions

Author(s):  
Fanhong Zeng ◽  
Junbo Zhang ◽  
Siwei Huang

A Jacobian matrix is said to be ill-conditioned if it is very sensitive to small changes. In this paper, the performance of Weighted Least Square (WLS) and Linear State Estimation (LSE) methods under stressed condition and ill condition of power system are compared. In weighted least square method, real/ reactive power injections/flows with very few bus voltage magnitudes are used to obtain the state vector (bus voltages) for given network model. This method inclined to convergence errors when the system is in stressed state or ill condition state. In Linear State Estimation method, bus voltage and current measurements are used to obtain the state vector. Because of its linear nature, LSE method is suitable under stressed condition/ ill condition of power systems. IEEE 14 bus, 13 bus ill conditioned system and EHV 24 bus systems are used in matlab environment to examine the proposed (LSE) method and simulation results are summarized.


Electricity ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 143-157
Author(s):  
Jovi Atkinson ◽  
Ibrahim M. Albayati

The operation and the development of power system networks introduce new types of stability problems. The effect of the power generation and consumption on the frequency of the power system can be described as a demand/generation imbalance resulting from a sudden increase/decrease in the demand and/or generation. This paper investigates the impact of a loss of generation on the transient behaviour of the power grid frequency. A simplified power system model is proposed to examine the impact of change of the main generation system parameters (system inertia, governor droop setting, load damping constant, and the high-pressure steam turbine power fraction), on the primary frequency response in responding to the disturbance of a 1.32 GW generation loss on the UK power grid. Various rates of primary frequency responses are simulated via adjusting system parameters of the synchronous generators to enable the controlled generators providing a fast-reliable primary frequency response within 10 s after a loss of generation. It is concluded that a generation system inertia and a governor droop setting are the most dominant parameters that effect the system frequency response after a loss of generation. Therefore, for different levels of generation loss, the recovery rate will be dependent on the changes of the governor droop setting values. The proposed model offers a fundamental basis for a further investigation to be carried on how a power system will react during a secondary frequency response.


Author(s):  
Omar Avalos ◽  
Erik Cuevas ◽  
Héctor G. Becerra ◽  
Jorge Gálvez ◽  
Salvador Hinojosa ◽  
...  

2011 ◽  
Vol 383-390 ◽  
pp. 4962-4966
Author(s):  
Ling Li ◽  
Guo Bin Jin ◽  
Shao Ping Huang ◽  
Xiao Peng

A novel method on frequency measurement based on improved TLS-ESPRIT (total least square estimation of signal parameters via rotational invariance techniques) is proposed in this paper with the research on fundamental frequency measurement in power system. TLS-ESPRIT is belong to subspace estimation in modern signal process. Noise is included in signal model, so it is independent on noise. But the same multi-poles cannot be taken when signal is in noise and based on TLS-ESPRIT. Multiple poles restoring is presented to take the true poles accurately. It is revealed that fundamental frequency is detected accurately in harmonics, interharmonics, noise and frequency fluctuations and better anti-noise ability in particular better adaptiveness on time varying signal in amplitude by simulation results.


Sign in / Sign up

Export Citation Format

Share Document