High core count single-mode multicore fiber for dense space division multiplexing

Author(s):  
K. Aikawa ◽  
Y. Sasaki ◽  
Y. Amma ◽  
K. Takenaga ◽  
S. Matsuo ◽  
...  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Georg Rademacher ◽  
Benjamin J. Puttnam ◽  
Ruben S. Luís ◽  
Tobias A. Eriksson ◽  
Nicolas K. Fontaine ◽  
...  

AbstractData rates in optical fiber networks have increased exponentially over the past decades and core-networks are expected to operate in the peta-bit-per-second regime by 2030. As current single-mode fiber-based transmission systems are reaching their capacity limits, space-division multiplexing has been investigated as a means to increase the per-fiber capacity. Of all space-division multiplexing fibers proposed to date, multi-mode fibers have the highest spatial channel density, as signals traveling in orthogonal fiber modes share the same fiber-core. By combining a high mode-count multi-mode fiber with wideband wavelength-division multiplexing, we report a peta-bit-per-second class transmission demonstration in multi-mode fibers. This was enabled by combining three key technologies: a wideband optical comb-based transmitter to generate highly spectral efficient 64-quadrature-amplitude modulated signals between 1528 nm and 1610 nm wavelength, a broadband mode-multiplexer, based on multi-plane light conversion, and a 15-mode multi-mode fiber with optimized transmission characteristics for wideband operation.


2014 ◽  
Vol 39 (12) ◽  
pp. 3571 ◽  
Author(s):  
K. Stępień ◽  
M. Slowikowski ◽  
T. Tenderenda ◽  
M. Murawski ◽  
M. Szymanski ◽  
...  

2021 ◽  
Author(s):  
Reinhardt Rading

<div>The concept of mode division multiplexing also known as space division multiplexing was introduced as an alternative to combat the approaching capacity crunch in single mode fibers. Just like single mode fibers, space division multiplexed fibers will experience non-linearity at a different level and studies have shown that some linear effects can be beneficial in combating the nonlinear interference. This study aims to identify the benefits accrued when these linear effects are implemented by exploring the already existing models defined in the literature.</div>


2021 ◽  
Author(s):  
Reinhardt Rading

<div>The concept of mode division multiplexing also known as space division multiplexing was introduced as an alternative to combat the approaching capacity crunch in single mode fibers. Just like single mode fibers, space division multiplexed fibers will experience non-linearity at a different level and studies have shown that some linear effects can be beneficial in combating the nonlinear interference. This study aims to identify the benefits accrued when these linear effects are implemented by exploring the already existing models defined in the literature.</div>


Author(s):  
Kazi Abedin ◽  
Thierry Taunay ◽  
John Fini ◽  
Lalit Bansal ◽  
V.R. Supradeepa ◽  
...  

Author(s):  
Sridhar Iyer ◽  
Shree Prakash Singh

The required upgradation of the network capacity of the single-mode fiber which is constrained by the non-linear Shannon’s limit, and the capacity provisioning needed by the future diverse Internet traffic can be resolved by the adoption of the Space Division Multiplexing (SDM) based Elastic Optical Networks (EONs) (SDM-b-EONs). In the current work, we focus on the performance analysis of a SDM-b-EON in which translucent lightpaths are routed through the spectral super-channels over the spatial single-mode fiber(s) bundle(s) links. In regard to regeneration, we investigate three scenarios which differ in their regeneration variability level in addition to the adjustment of modulation formats according to transmission route characteristics. We conduct extensive simulations considering an online traffic case and two realistic network topologies with different numbers of (i) fibers in every link, and (ii) transceivers available within SDM-b-EON. The obtained results demonstrate that when regeneration is conducted with complete flexibility and simultaneously the modulation format conversion is also permitted at every SDM-b-EON node both, largest traffic volume amounts can be provisioned, and significant SDM-b-EON performance scaling can be obtained with a corresponding increase in the utilized fibers amount.


2017 ◽  
Vol 35 ◽  
pp. 64-71 ◽  
Author(s):  
Kazi S. Abedin ◽  
Man F. Yan ◽  
Thierry F. Taunay ◽  
Benyuan Zhu ◽  
Eric M. Monberg ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document