Cloud computing in electric vehicles charging control and dispatch optimization

Author(s):  
Dan Wu ◽  
Bo Liu ◽  
Zhijian Chen ◽  
Wenyan Xie ◽  
Xiang Huang ◽  
...  
Author(s):  
David Dallinger ◽  
Robert Kohrs ◽  
Michael Mierau ◽  
Simon Marwitz ◽  
Julius Wesche

2021 ◽  
Vol 1 (1) ◽  
pp. 78-88
Author(s):  
Xiaoying Tang ◽  
Chenxi Sun ◽  
Suzhi Bi ◽  
Shuoyao Wang ◽  
Angela Yingjun Zhang

The rapid growth of electric vehicles (EVs) has promised a next-generation transportation system with reduced carbon emission. The fast development of EVs and charging facilities is driving the evolution of Internet of Vehicles (IoV) to Internet of Electric Vehicles (IoEV). IoEV benefits from both smart grid and Internet of Things (IoT) technologies which provide advanced bi-directional charging services and real-time data processing capability, respectively. The major design challenges of the IoEV charging control lie in the randomness of charging events and the mobility of EVs. In this article, we present a holistic review on advanced bi-directional EV charging control algorithms. For Grid-to-Vehicle (G2V), we introduce the charging control problem in two scenarios: 1) Operation of a single charging station and 2) Operation of multiple charging stations in coupled transportation and power networks. For Vehicle-to-Grid (V2G), we discuss how EVs can perform energy trading in the electricity market and provide ancillary services to the power grid. Besides, a case study is provided to illustrate the economic benefit of the joint optimization of routing and charging scheduling of multiple EVs in the IoEV. Last but not the least, we will highlight some open problems and future research directions of charging scheduling problems for IoEVs.


Sign in / Sign up

Export Citation Format

Share Document