Novel blind modulation classification of circular and linearly modulated signals using cyclic cumulants

Author(s):  
Sudhan Majhi ◽  
Rahul Gupta ◽  
Weidong Xiang
2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Sajjad Ahmed Ghauri ◽  
Ijaz Mansoor Qureshi ◽  
Tanveer Ahmed Cheema ◽  
Aqdas Naveed Malik

A Gabor filter network based approach is used for feature extraction and classification of digital modulated signals by adaptively tuning the parameters of Gabor filter network. Modulation classification of digitally modulated signals is done under the influence of additive white Gaussian noise (AWGN). The modulations considered for the classification purpose are PSK 2 to 64, FSK 2 to 64, and QAM 4 to 64. The Gabor filter network uses the network structure of two layers; the first layer which is input layer constitutes the adaptive feature extraction part and the second layer constitutes the signal classification part. The Gabor atom parameters are tuned using Delta rule and updating of weights of Gabor filter using least mean square (LMS) algorithm. The simulation results show that proposed novel modulation classification algorithm has high classification accuracy at low signal to noise ratio (SNR) on AWGN channel.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Feng Wang ◽  
Shanshan Huang ◽  
Chao Liang

Sensing the external complex electromagnetic environment is an important function for cognitive radar, and the concept of cognition has attracted wide attention in the field of radar since it was proposed. In this paper, a novel method based on an idea of multidimensional feature map and convolutional neural network (CNN) is proposed to realize the automatic modulation classification of jamming entering the cognitive radar system. The multidimensional feature map consists of two envelope maps before and after the pulse compression processing and a time-frequency map of the receiving beam signal. Drawing the one-dimensional envelope in a 2-dimensional plane and quantizing the time-frequency data to a 2-dimensional plane, we treat the combination of the three planes (multidimensional feature map) as one picture. A CNN-based algorithm with linear kernel sensing the three planes simultaneously is selected to accomplish jamming classification. The classification of jamming, such as noise frequency modulation jamming, noise amplitude modulation jamming, slice jamming, and dense repeat jamming, is validated by computer simulation. A performance comparison study on convolutional kernels in different size demonstrates the advantage of selecting the linear kernel.


Sign in / Sign up

Export Citation Format

Share Document