Throughput upper bounds for Markovian Petri nets: embedded subnets and queueing networks

Author(s):  
J. Campos ◽  
M. Silva
1998 ◽  
Vol 35 (2) ◽  
pp. 473-481 ◽  
Author(s):  
Richard J. Boucherie ◽  
Matteo Sereno

The traffic equations are the basis for the exact analysis of product form queueing networks, and the approximate analysis of non-product form queueing networks. Conditions characterising the structure of the network that guarantees the existence of a solution for the traffic equations are therefore of great importance. This note shows that the new condition stating that each transition is covered by a minimal closed support T-invariant, is necessary and sufficient for the existence of a solution for the traffic equations for batch routing queueing networks and stochastic Petri nets.


1993 ◽  
Vol 7 (3) ◽  
pp. 335-342 ◽  
Author(s):  
Erol Gelenbe

We consider queueing networks containing customers and signals that were recently introduced in Gelenbe [4]. Both customers and signals can be exogenous or can be obtained by a Markovian transition of a customer after service. A signal entering a queue forces a customer to move on to another queue according to a Markovian routing rule or to leave the network in batch mode. This synchronized or triggered motion is useful in representing the effect of tokens in Petri-nets, for systems in which customers and work can be instantaneously moved from one queue to the other on the arrival of a signal as well as for other network behaviors that are encountered in parallel computer system modelling. We show that this network has product form stationary solution and establish the non-linear customer flow equations that govern it. Network stability is discussed in this new context.


1995 ◽  
Vol 28 (2) ◽  
pp. 351-365 ◽  
Author(s):  
Dong-Wan Tcha ◽  
Chun-Hyun Paik ◽  
Won-Taek Lee

2004 ◽  
Vol 2004 (57) ◽  
pp. 3023-3036 ◽  
Author(s):  
P. K. Mishra

We prove the following property for safe marked graphs, safe conflict-free Petri nets, and live and safe extended free-choice Petri nets. We prove the following three results. If the Petri net is a marked graph, then the length of the shortest path is at most(|T|−1)⋅|T|/2. If the Petri net is conflict free, then the length of the shortest path is at most(|T|+1)⋅|T|/2. If the petrinet is live and extended free choice, then the length of the shortest path is at most|T|⋅|T+1|⋅|T+2|/6, whereTis the set of transitions of the net.


Sign in / Sign up

Export Citation Format

Share Document