Comparative analysis of dynamic model reduction with application in power systems

Author(s):  
Mohammad Khatibi ◽  
Turaj Amraee ◽  
Hassan Zargarzadeh ◽  
Mohammadreza Barzegaran
IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 97863-97872
Author(s):  
Ning Tong ◽  
Zhihao Jiang ◽  
Lin Zhu ◽  
Yilu Liu

Author(s):  
Diego A. Monroy-Ortiz ◽  
Sergio A. Dorado-Rojas ◽  
Eduardo Mojica-Nava ◽  
Sergio Rivera

Abstract This article presents a comparison between two different methods to perform model reduction of an Electrical Power System (EPS). The first is the well-known Kron Reduction Method (KRM) that is used to remove the interior nodes (also known as internal, passive, or load nodes) of an EPS. This method computes the Schur complement of the primitive admittance matrix of an EPS to obtain a reduced model that preserves the information of the system as seen from to the generation nodes. Since the primitive admittance matrix is equivalent to the Laplacian of a graph that represents the interconnections between the nodes of an EPS, this procedure is also significant from the perspective of graph theory. On the other hand, the second procedure based on Power Transfer Distribution Factors (PTDF) uses approximations of DC power flows to define regions to be reduced within the system. In this study, both techniques were applied to obtain reduced-order models of two test beds: a 14-node IEEE system and the Colombian power system (1116 buses), in order to test scalability. In analyzing the reduction of the test beds, the characteristics of each method were classified and compiled in order to know its advantages depending on the type of application. Finally, it was found that the PTDF technique is more robust in terms of the definition of power transfer in congestion zones, while the KRM method may be more accurate.


Author(s):  
Lijuan Li ◽  
Yongdong Chen ◽  
Bin Zhou ◽  
Hongliang Liu ◽  
Yongfei Liu

AbstractWith the increase in the proportion of multiple renewable energy sources, power electronics equipment and new loads, power systems are gradually evolving towards the integration of multi-energy, multi-network and multi-subject affected by more stochastic excitation with greater intensity. There is a problem of establishing an effective stochastic dynamic model and algorithm under different stochastic excitation intensities. A Milstein-Euler predictor-corrector method for a nonlinear and linearized stochastic dynamic model of a power system is constructed to numerically discretize the models. The optimal threshold model of stochastic excitation intensity for linearizing the nonlinear stochastic dynamic model is proposed to obtain the corresponding linearization threshold condition. The simulation results of one-machine infinite-bus (OMIB) systems show the correctness and rationality of the predictor-corrector method and the linearization threshold condition for the power system stochastic dynamic model. This study provides a reference for stochastic modelling and efficient simulation of power systems with multiple stochastic excitations and has important application value for stability judgment and security evaluation.


2019 ◽  
Vol 177 ◽  
pp. 106002
Author(s):  
Johnny Leung ◽  
Michel Kinnaert ◽  
Jean-Claude Maun ◽  
Fortunato Villella

Sign in / Sign up

Export Citation Format

Share Document