Improvement of amorphous silicon solar cell performance by inserting a tungsten oxide layer between zinc oxide and p-type amorphous silicon carbide

Author(s):  
Jong-San Im ◽  
Jin-Wan Jeon ◽  
Sangil Park ◽  
Yongmin Lee ◽  
Koeng Su Lim
1999 ◽  
Vol 557 ◽  
Author(s):  
M. Kanbe ◽  
T. Komaru ◽  
K. Fukutani ◽  
T. Kamiya ◽  
C.M. Fortmann ◽  
...  

AbstractSeveral promising new methods for amorphous silicon solar cell preparation involve high substrate temperatures and/or very reactive atmospheres. When incorporated into solar cells, the performance of these layers has often been less than expected due to enhanced diffusion and/or chemical reactions. This poor performance results from the harsh deposition environments. Deleterious effects include darken of TCO coated glass substrates due to hydrogen diffusion to and hydrogen reduction at the TCO interface when solar cells are prepared in the p-i-n deposition sequence. Alternatively, the deposition of TCO layers onto amorphous layers also involves rather harsh oxidizing conditions that have a deleterious effect on the top most amorphous silicon-based p-layers. Strategic use of blocking layers results in remarkably improved solar cell performance. A thin Cr layer (probably becoming Cr2O3) shows ability to improve the performance of both n-ip and p-i-n solar cells by inhibiting both O and H diffusion.


Sign in / Sign up

Export Citation Format

Share Document