front electrode
Recently Published Documents


TOTAL DOCUMENTS

88
(FIVE YEARS 10)

H-INDEX

14
(FIVE YEARS 1)

Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5507
Author(s):  
Matteo Caleffi ◽  
Paolo Mariani ◽  
Giovanni Bertoni ◽  
Guido Paolicelli ◽  
Luca Pasquali ◽  
...  

Nanocluster aggregation sources based on magnetron-sputtering represent precise and versatile means to deposit a controlled quantity of metal nanoparticles at selected interfaces. In this work, we exploit this methodology to produce Ag/MgO nanoparticles (NPs) and deposit them on a glass/FTO/TiO2 substrate, which constitutes the mesoscopic front electrode of a monolithic perovskite-based solar cell (PSC). Herein, the Ag NP growth through magnetron sputtering and gas aggregation, subsequently covered with MgO ultrathin layers, is fully characterized in terms of structural and morphological properties while thermal stability and endurance against air-induced oxidation are demonstrated in accordance with PSC manufacturing processes. Finally, once the NP coverage is optimized, the Ag/MgO engineered PSCs demonstrate an overall increase of 5% in terms of device power conversion efficiencies (up to 17.8%).


2021 ◽  
Vol 11 (9) ◽  
pp. 4170
Author(s):  
Jeong Eun Park ◽  
Won Seok Choi ◽  
Donggun Lim

Silicon wafers are crucial for determining the price of solar cell modules. To reduce the manufacturing cost of photovoltaic devices, the thicknesses of wafers are reduced. However, the conventional module manufacturing method using the tabbing process has a disadvantage in that the cell is damaged because of the high temperature and pressure of the soldering process, which is complicated, thus increasing the process cost. Consequently, when the wafer is thinned, the breakage rate increases during the module process, resulting in a lower yield; further, the module performance decreases owing to cracks and thermal stress. To solve this problem, a module manufacturing method is proposed in which cells and wires are bonded through the lamination process. This method minimizes the thermal damage and mechanical stress applied to solar cells during the tabbing process, thereby manufacturing high-power modules. When adopting this method, the front electrode should be customized because it requires busbarless solar cells different from the existing busbar solar cells. Accordingly, the front electrode was designed using various simulation programs such as Griddler 2.5 and MathCAD, and the effect of the diameter and number of wires in contact with the front finger line of the solar cell on the module characteristics was analyzed. Consequently, the efficiency of the module manufactured with 12 wires and a wire diameter of 0.36 mm exhibited the highest efficiency at 20.28%. This is because even if the optical loss increases with the diameter of the wire, the series resistance considerably decreases rather than the loss of the short-circuit current, thereby improving the fill factor. The characteristics of the wire-embedded ethylene vinyl acetate (EVA) sheet module were confirmed to be better than those of the five busbar tabbing modules manufactured by the tabbing process; further, a high-power module that sufficiently compensated for the disadvantages of the tabbing module was manufactured.


Author(s):  
Tingmei Fan ◽  
Zhiqiang Liu ◽  
Min Cui ◽  
Tingting Wei ◽  
Xin Li ◽  
...  
Keyword(s):  

Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4537
Author(s):  
Cheolmin Park ◽  
Sungyoon Chung ◽  
Nagarajan Balaji ◽  
Shihyun Ahn ◽  
Sunhwa Lee ◽  
...  

In this study, the contact mechanism between Ag–Al and Si and the change in contact resistance (Rc) were analyzed by varying the firing profile. The front electrode of an n-type c-Si solar cell was formed through a screen-printing process using Ag–Al paste. Rc was measured by varying the belt speed and peak temperature of the fast-firing furnace. Rc value of 6.98 mΩ-cm−2 was obtained for an optimal fast-firing profile with 865 °C peak temperature and 110 inches per min belt speed. The contact phenomenon and the influence of impurities between the front-electrode–Si interface and firing conditions were analyzed through scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). The EDS analysis revealed that the peak firing temperature at 865 °C exhibited a low atomic weight percentage of Al (0.72 and 0.36%) because Al was involved in the formation of alloy of Si with the front electrode. Based on the optimal results, a solar cell with a conversion efficiency of 19.46% was obtained.


2019 ◽  
Vol 9 (4) ◽  
pp. 1155-1155
Author(s):  
Monica Morales-Masis ◽  
Esteban Rucavado ◽  
Raphael Monnard ◽  
Loris Barraud ◽  
Jakub Holovsky ◽  
...  
Keyword(s):  

Energies ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1593 ◽  
Author(s):  
Jong Rok Lim ◽  
Sihan Kim ◽  
Hyung-Keun Ahn ◽  
Hee-Eun Song ◽  
Gi Hwan Kang

The silicon wafers for solar cells on which the paste is deposited experience a bowing phenomenon. The thickness of commonly used c-Si wafers is 180 μm or more. When fabricating c-Si solar cells with this wafer thickness, the bowing value is 3 mm or less and the problem does not occur. However, for the thin c-Si solar cells which are being studied recently, the output reduction due to failure during manufacture and cracking are attributed to bowing. In generally, it is known that the bowing phenomenon arises mainly from the paste applied to the back side electrode of c-Si solar cells and the effects of SiNx (silicon nitride) and the paste on the front side are not considered significant. The bowing phenomenon is caused by a difference in the coefficient of expansion between heterogeneous materials, there is the effect of bowing on the front electrode and ARC. In this paper, a partially processed c-Si solar cell was fabricated and a bowing phenomenon variation according to the wafer thicknesses was confirmed. As a result of the experiment, the measured bow value after the firing process suggests that the paste on the front-side indicates a direction different from that of the back-side paste. The bow value increases when Al paste is deposited on SiNx. The fabricated c-Si solar cell was analyzed on basis of the correlation between the bowing phenomenon of the materials and the c-Si wafer using Stoney’s equation, which is capable of analyzing the relationship between bowing and stress. As a result, the bowing phenomenon of the c-Si solar cell estimated through the experiment that the back side electrode is the important element, but also the front electrode and ARC influence the bowing phenomenon when fabricating c-Si solar cells using thin c-Si wafers.


2019 ◽  
Vol 14 ◽  
pp. 155892501986162
Author(s):  
Carsten Graßmann ◽  
Thomas Grethe ◽  
Lieva van Langenhove ◽  
Anne Schwarz-Pfeiffer

Alternating current–driven electroluminescent devices on polyester fabrics were realized using a combination of coating and printing. The PEDOT:PSS front electrode was coated onto the fabric using knife coating. All other layers were digitally printed using a specially modified three-dimensional printer and three-dimensional printing software. Slicing parameters (line distance, printing speed, printing pattern) as well as other hardware parameters and ink viscosity were evaluated for each ink to obtain a good print. Final results show a complex interaction of all investigated parameters. Fully digitally printed electroluminescent devices show a luminescence of 44 lx, but combinations of digital printing and knife coating show a much higher luminescence of up to 128 lx for samples with an even smaller luminous layer thickness.


Sign in / Sign up

Export Citation Format

Share Document