glass substrate
Recently Published Documents


TOTAL DOCUMENTS

2127
(FIVE YEARS 348)

H-INDEX

48
(FIVE YEARS 7)

Author(s):  
Yoshitaro Sakata ◽  
Nao TERASAKI

Abstract Demand for flexible electronics is increasing due to recent global movements related to IoT. In particular, the ultra-thin glass substrate can be bent, its use is expanding for various applications such as thin liquid crystal panels. On the other hand, fine-polishing techniques such as chemical mechanical polishing treatments, are important techniques in glass substrate manufacturing. However, these techniques may cause microcracks under the surface of glass substrates because they use mechanical friction. We propose a novel non-contact thermal stress-induced light-scattering method (N-SILSM) using a heating device for inspecting surfaces to detect polishing-induced microcracks. In this report, we carry out the selective detection of microcracks and tiny particles using a N-SILSM with temperature variation. Our results show that microcracks and tiny particles can be distinguished and measured by a N-SILSM utilizing temperature change, and that microcrack size can be estimated based on the change in light-scattering intensity.


Author(s):  
Xingzhen Yan ◽  
Bo Li ◽  
Kaian Song ◽  
Fan Yang ◽  
Yanjie Wang ◽  
...  

Abstract We have prepared an ultra-thin flexible transparent conductive electrode with high folding endurance composed of randomly arranged silver nanowires (AgNWs) embedded in polydimethylsiloxane (PDMS). A simple preparation method was performed to connect a glass substrate coated with a AgNW network and a glass substrate coated with PDMS. The glass substrate was then removed after the PDMS solidified, and the AgNW–PDMS composite film was peeled off. Moreover, the problem of the high contact resistance caused by the random arrangement of AgNWs was solved by the local joule heat generated by applying voltage to both sides of the AgNW–PDMS composite structure to weld the overlapping AgNWs. The sheet resistance (Rs ) of AgNW–PDMS composite films with different AgNW deposition concentrations decreased by 46.4%–75.8% through this electro-sintering treatment. The embedded structure of the AgNW–PDMS composite ensures better voltage resistance and environmental stability under high temperature and humidity conditions compared with a AgNW network attached to a glass substrate. Additionally, the substrate-free, excellent elasticity and high resilience characteristics resulted in the Rs value of the same composite electrode only increasing by 2.9 ohm/sq after folding four times. The advantage of the metal thermal conductivity makes the joule heat generated by electric injection rapidly diffuse and dissipate in the AgNW-based transparent heater with faster response time and smaller voltage drive than indium tin oxide.


2022 ◽  
Vol 16 (1) ◽  
pp. 52-59
Author(s):  
Michio Uneda ◽  
Nodoka Yamada ◽  
Yoshihiro Tawara ◽  
◽  

Chemical mechanical polishing (CMP) using a suede polishing pad is an essential fabrication process for glass substrates that require ultra-high planarization. However, the effect of surface asperities of the suede pad on its polishing characteristics is not completely understood because the structure of the suede pad in the thickness direction is not constant, and its surface asperities can easily change during the pad conditioning or marathon polishing processes. In addition, many previous studies have discussed the polishing mechanism using a suede pad; however, these studies used suede pads with a pore size of approximately 100 μm. This paper discusses the polishing characteristics of a suede pad with fine micrometer-sized pores by clarifying the relationships between the removal rate, friction coefficient, pore parameters, and roughness as the pad surface asperities. In this study, a series of marathon polishing tests were performed with and without conditioning. It was discovered that the removal rate was affected not only by the pore parameters but also by the surface roughness of the suede pad with fine pores. The relationship between the removal rate and the friction coefficient changed owing to the influence of pad conditioning, and this change is significant when the break-in conditioning time is short.


2022 ◽  
Author(s):  
Zohreh Ayareh ◽  
Mehrdad Moradi

Abstract Nanoparticles of noble metals are well known to display unique optical properties due to the localized surface plasmon resonance (LSPR) phenomenon, making them applicable for use as transducers in various LSPR sensor configurations. In order to develop a sensor chip, Au nanoparticles (AuNPs) were decorated onto a transparent glass substrate in the form of a uniform, high-density single layer using a self-assembly monolayer (SAM) process. The glass substrate surface was initially modified with amine functional groups using different concentrations of (3-Aminopropyl) triethoxysilane (APTES), followed by its optimization to reach a uniform monolayer of AuNPs. The optimized substrate was subsequently prepared by functionalization with APTES, while also being immersed into colloidal AuNPs. A uniform layer of Graphene oxide (GO) and reduced graphene oxide (rGO) sheets were coated on the AuNPs thin films using the dip-coating technique. The AuNPs/GO and rGO hybrid films were employed along with an appropriate optical set up acting as a smart sensor chip for detection of different concentrations of biomaterials. The optimum LSPR sensor (%0.5 APTES immersed in colloidal AuNPs for 12 h) resulted in a chip with %29 absorption and sharper plasmon peak. This appropriate condition remained constant after adding rGO, indicating that Glass/AuNPs/rGO chip will be suitable for sensory applications.


Nanoscale ◽  
2022 ◽  
Author(s):  
Qian Cai ◽  
Qiankun Ju ◽  
Wenting Hong ◽  
Chuanyong Jian ◽  
Taikun Wang ◽  
...  

Herein, we demonstrate a chemical vapor deposition route to controlled growth of large scale MoS2/MoSe2 vertical van der Waals heterostructures on molten glass substrate using water as the oxidizing chemical...


Author(s):  
Vladimir Ivanovski ◽  
Ireneusz Piwoński ◽  
Dariusz Guziejewski ◽  
Thomas G. Mayerhöfer

Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 149
Author(s):  
Zhengyong Liu ◽  
Youdong Chen ◽  
Henan Song ◽  
Zhenming Xing ◽  
Hongmiao Tian ◽  
...  

The development of “large display, high performance and low cost” in the FPD industry demands glass substrates to be “larger and thinner”. Therefore, the requirements of handling robots are developing in the direction of large scale, high speed, and high precision. This paper presents a novel construction of a glass substrate handling robot, which has a 2.5 m/s travelling speed. It innovatively adopts bionic end-suction technology to grasp the glass substrate more firmly. The structure design is divided into the following three parts: a travel track, a robot body, and an end-effector. The manipulator can be smoothly and rapidly extended by adjusting the transmission ratio of the reducer to 1:2:1, using only one motor to drive two sections of the arm. This robot can transfer two pieces of glass substrate at one time, and improves the working efficiency. The kinematic and dynamic models of the robot are built based on the DH coordinate. Through the positioning accuracy experiment and vibration experiment of the end-effector, it is found that the robot has high precision during handling. The robots developed in this study can be used in large-scale glass substrate handling.


Coatings ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 5
Author(s):  
Takhir M. Razykov ◽  
Aleksy Patryn ◽  
Mirosław Maliński ◽  
Leszek Bychto ◽  
Bobur Ergashev ◽  
...  

This paper presents the results of the photoacoustic, SEM, and surface photovoltage experiments performed on the series of CdS1−xTex thin films. These CdS1−xTex (0 ≤ x ≤ 1) thin films were obtained on the glass substrate by the chemical molecular beam deposition (CMBD) method. The polycrystalline character of these films was revealed by SEM pictures. From the experimental optical characteristics, the optical absorption coefficient spectra of the samples and values of their energy gaps vs. their composition were determined. From the surface photovoltage characteristics, the diffusion lengths of the carriers were also determined.


Sign in / Sign up

Export Citation Format

Share Document