Adaptive sliding mode controller design for mobile robot fault tolerant control. introducing ARTEMIC.

Author(s):  
Cristian Axenie ◽  
Daniela Cernega
2012 ◽  
Vol 503-504 ◽  
pp. 1647-1650
Author(s):  
Sheng Qi Sun ◽  
Xue Bin Li

In this paper, an adaptive sliding model design method is proposed to deal with the asymptotic stabilization problem for a class of fault-tolerant control systems with sensor failures and state time-delays. The considered faults on sensors are assumed to be unknown but depended on the system states without breaching the practical case, while the effects of time delays are also related to the states. For the sake of eliminating the effects of sensor faults and delays, an adaptive sliding mode controller is developed by using the fault signals transmitted by sensors with adjusting some adaptive estimations. Then the asymptotic stability results are ensured by using the proposed static output feedback controller via Lyapunov stability theory. The proposed design technique is finally evaluated in the light of a simulation example.


Sign in / Sign up

Export Citation Format

Share Document