Adaptive Sliding Mode Controller Designs for Fault-Tolerant Control Systems with Sensor Failures and State Time-Delays

2012 ◽  
Vol 503-504 ◽  
pp. 1647-1650
Author(s):  
Sheng Qi Sun ◽  
Xue Bin Li

In this paper, an adaptive sliding model design method is proposed to deal with the asymptotic stabilization problem for a class of fault-tolerant control systems with sensor failures and state time-delays. The considered faults on sensors are assumed to be unknown but depended on the system states without breaching the practical case, while the effects of time delays are also related to the states. For the sake of eliminating the effects of sensor faults and delays, an adaptive sliding mode controller is developed by using the fault signals transmitted by sensors with adjusting some adaptive estimations. Then the asymptotic stability results are ensured by using the proposed static output feedback controller via Lyapunov stability theory. The proposed design technique is finally evaluated in the light of a simulation example.

IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 39873-39883
Author(s):  
Wang Jinghua ◽  
Liu Yang ◽  
Cao Guohua ◽  
Zhao Yongyong ◽  
Zhang Jiafeng

Author(s):  
Jun Zhou ◽  
Jing Chang ◽  
Zongyi Guo

The paper describes the design of a fault-tolerant control scheme for an uncertain model of a hypersonic reentry vehicle subject to actuator faults. In order to improve superior transient performances for state tracking, the proposed method relies on a back-stepping sliding mode controller combined with an adaptive disturbance observer and a reference vector generator. This structure allows for a faster response and reduces the overshoots compared to linear conventional disturbance observers based sliding mode controller. Robust stability and performance guarantees of the overall closed-loop system are obtained using Lyapunov theory. Finally, numerical simulations results illustrate the effectiveness of the proposed technique.


Sign in / Sign up

Export Citation Format

Share Document